SYNTHESIS OF NANOCATALYSTS FOR THE CO HYDROGENATION TO FUELS

Department of Chemistry, University of Helsinki, Finland

INTRODUCTION

- 4AirCRAFT is aimed at converting recycled CO₂ into sustainable liquid fuels for the aviation sector
- 4AirCRAFT is targeting to convert CO_2 to C_8-C_{16} under milder conditions as compared to conventional catalytic routes [1]
- In one of the proposed strategies, CO₂ is first converted into CO, which is then employed as starting material to long-chain hydrocarbons via FTS
- The goal of our team is to develop inorganic nanocatalysts for the conversion of CO to C_8-C_{16} molecules (fuels)

Fig. 1. Scheme of the bifunctional nanocatalyst

OBJECTIVES

- Develop bifunctional nanocatalysts comprising NPs based on Fe species and zeolites (Fig. 1)
- Investigate the role of the synthesis and Al/Si ratio in the zeolite over catalytic activity and reaction selectivity towards C₈-C₁₆ molecules

RESULTS AND DISCUSSION

- We started by focusing on H-ZSM-5 as the zeolite and Fe_3O_4 NPs as the Fe component [2]
- We focused on three synthesis strategies: 1) physical mixture, 2) impregnation of pre-formed Fe_3O_4 NPs, and 3) solution impregnation

Fig. 2. Preparation method (left column), SEM (middle column) and TEM (right column) images of prepared catalysts

CONCLUSIONS

- Physical mixture and impregnation of pre-formed Fe₃O₄ NPs lead to aggregation of NPs, which becomes mixed with H-ZSM-5
- Solution impregnation leads to a more uniform dispersion of Fe-based components
- Further characterization and catalytic assessment is in progress

References:

[1] 4AirCRAFT - https://4aircraft-project.eu/. Accessed 29.4.2022; [2] J. Wei et al. Nat. Commun. 8, 15174 (2017)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101022633. This work is supported by Japan Science and Technology Agency (JST) under Grant Agreement No JPMJSC2102. This project is developed in the frame of a Mission Innovation Challenge. For SEM and TEM imaging we acknowledge ALD Center Finland research infrastructure and Biocenter Finland. Diagrams created with Chemix (<u>https://chemix.org</u>).

