

Investigation on Layered Double Hydroxides as potential electrocatalysts for CO₂ reduction reaction to CO: in-situ IR spectroscopy studies

> Margherita Cavallo¹, **Melodj Dosa¹**, Ryosuke Nakazato², Natale Gabriele Porcaro¹, Matteo Signorile¹, Silvia Bordiga¹, Nataly Carolina Rosero-Navaro², Kiyoharu Tadanaga², Valentina Crocellà¹, Francesca Bonino¹

> > ¹Department of Chemistry, NIS and INSTM Reference Centers, Università di Torino, Via Quarello 15/A, 10135 Torino, Italy

> > ²Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido, Japan

TABLE OF CONTENTS

Introduction

State of art and focus on 4AirCRAFT project

Material and Methods

Description of the methodologies used in this study

03

01

Discussion about the results from characterization and tests

Results

04

02

Conclusions

Conclusions and future prespective

01

INTRODUCTION

Melodj Dosa

Figure 1. Example of LDH structure.

¹X. Duan et al., Adv. Mater., 29 (2017) 1701784.
²R. Nakazato et al. RSC Sustain. (2023), submitted.
³N. Yamaguchi at al. J. Asian Ceram. Soc. (2023), submitted.
⁴Y. Furukawa et al. Solid State Ionics., 192 (2011) 185–187.

INTRODUCTION

The electrochemical CO_2 reduction reaction (CO2RR) to CO is a promising strategy for the CO_2 conversion ¹⁻³.

Among the possible materials can be used for CO2RR, the **Layered Doubled Hydroxides (LDHs**) are <u>good candidate</u> since they have⁴:

- Strong affinity with CO₂ in water.
- High stability in basic electrolytes.
- High ion conductivity.
- High affordability of the components.

INTRODUCTION

This work is part of the H2020 European Founding project "**4AirCRAFT**" Air Carbon Recycling for Aviation Fuel Technology (GA ID 101022633).

Other researchers from the project joint the ICCDU23 with oral contribution, **Dr. Elias Rodriguez Jara** and **Dr. Vanesa Gil**, who already introduced the aim of 4AirCRAFT.

For further information, visit our project's website: https://4aircraft-project.eu/

MATERIALS AND METHODS

02

Melodj Dosa

MATERIALS AND METHODS

• The **synthesis** were performed by Hokkaido University, according to the scheme reported.

Electrocatalytic tests

were performed by a custom-made three-electrode setup

Melodj Dosa

MATERIALS AND METHODS

- Thin deposition on ATR crystal.
- Saturation of H_2O with N_2 (for 30 min).
- Then, saturation of H_2O with CO_2 (other 30 min).
- **Spectra** of materials at room temperature (**RT**).

Figure 4. ATR-IR spectra in the 3700-650 cm⁻¹ spectral region of dry Zn-Al LDH, Ni-Al LDH and Ni-Fe LDH.

The samples exhibit a common **broad band** in the **high frequency region** (3500-2950 cm⁻¹).

RESULTS

- In the **low frequency region**, the samples have a broad band (1000-650 cm⁻¹) which derives from the superimposition of the v2 of interlayer carbonate anions and the lattice HO-M-OH and M-OH vibrational modes.
- The **Ni-Al** and **Ni-Fe** LDHs interestingly show some additional peaks.

10/19

RESULTS

Figure 5. In situ ATR-IR spectra in the 3600-650 cm⁻¹ spectral region of samples

- The contact with H₂O caused an increase in the high frequency region bands associated to the OH stretching.
- The interaction of CO₂ was responsible for the appearance of surface (non-structural) carbonates-like species.

RESULTS

0

Ο

Figure 6. In situ ATR-IR spectra in the carbonate-like region (1800-1200 cm⁻¹) of: Zn-Al LDH, Ni-Al LDH and Ni-Fe LDH. The corresponding differential spectra (obtained by subtracting the spectra of the wet N_2 -saturated sample to that of the wet CO₂-saturated sample).

RESULTS

And the winner is... Zn-Al LDH!!!!!

Figure 6. Applied potential dependence of Faradaic efficiency (FE) for CO2RR in 1.0M aqueous $KHCO_3$ solution using each cathode with (a) Zn-Al LDH, (b) Ni-Fe LDH and (c) Ni-Al LDH, and (d) without LDH. (orange bar: CO, blue bar: H_2)

13/19

CONCLUSIONS

- The in situ ATR-IR measurements highlighted that the three LDH samples formed different families of bidentate carbonates with different strength and stability which are leading to a different reactivity of the samples.
 - The Zn-Al LDH, which shows also a different carbonate evolution in in-situ ATR-IR measurements, exhibited the highest COforming CO2RR activity. (a)

CONCLUSIONS

- Further development of Zn-Al LDH as a CO2RR catalyst.
 - **Currently under investigation different Zn-Al LDH** system, with different ratios of Zn-to-Al.

ACKNOWLEDGMENT

Dr. Margherita Cavallo Dr. Natale Porcaro

Professor Matteo Signorile Professor Francesca Bonino Professor Valentina Crocellà Professor Silvia Bordiga

Dr. Ryosuke Nakazato Professor Nataly Carolina Rosero-Navaro Professor Kiyoharu Tadanaga

18/19

FUNDACIÓN PARA EL DESARROLLO DE LAS NUEVAS TECNOLOGÍAS DEL HIDRÓGEN

Universiteit Antwerpen

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101022633. This project is supported by Japan Science and Technology Agency (JST) (Grant Agreement No JPMJSC2102) and São Paulo Research Foundation (FAPESP) (Grant Agreement No 2022/04751-0).

HELSINGIN YLIOPISTO

BASQUE CENTER FOR MATERIALS, APPLICATIONS & NANOSTRUCTURES

CSIC

UNIVERSITÀ DI TORINO

4AirCRAFT

北海道大学

THANK YOU FOR YOUR KIND ATTENTION

Melodj Dosa, PhD

Università di Torino Dipartimento di Chimica E-mail: melodj.dosa@unito.it