

S2C2Solar2ChemSolar2ChemConference

High selective electrochemical conversion of CO_2 to CO as a key step in jet fuel synthesis at mild conditions

Eduardo Bernad Quílez R&D Technician, PhD Candidate Aragon Hydrogen Foundation

High selective electrochemical conversion of CO₂ to CO as a key step in jet fuel synthesis at mild conditions

<u>E. Bernad¹</u>, J. Gurauskis^{2,3}, V. Gil^{1,2}, R. Burato³, J. Sánchez-Laínez¹, A. Morales-Marín¹, NC Rosero-Navarro⁴, R. Nakazato⁴, K. Tadanaga⁴

¹Fundación Hidrógeno de Aragón, Parque Tecnológico Walqa Ctra. N-330^a, km. 566, 22197 Cuarte, Huesca, España

²Fundación ARAID, Avda. de Ranillas 1-D, 50018 Zaragoza, España

³INMA, C/ Mariano Esquillor, 15 Campus Río Ebro – 50018 Zaragoza, España

⁴Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido, Japan

Aragon Hydrogen Foundation

Private, non-profit research center, created to promote the use of Hydrogen as energy vector Initiative promoted by the Government of Aragon in 2003 & the support of the local industry and other entities. Currently 88 member in our Board of Trustees.

International and national participation

Interregional partnership for Smart Specialisation on

SAFE AND SUSTAINABLE MOBILITY

Board Member Hydrogen -Vallevs **Cross-Technical Committee Leader**

Departamento de Innovación, Investigación y Universidad

Recognized as Research Group: H2 + I. Hydrogen for the Research

Leading regions
Aragón (ES)
BAYERN (DE)
lle-de-France (FR)
Participating regions
Castilla y León (ES)
Comunidad Foral de Navarra
Helsinki-Uusimaa (FI)
NOORD-NEDERLAND (NL)
NORMANDIE (FR)
Noord-Brabant (NL)
Oberösterreich (AT)
Pohjois-Pohjanmaa (FI)
Zala (HU)

CLÚSTER ENERGÍA ARAGÓN

ELEC

4

EUROPEAN COMMITTEE

Aragon Hydrogen Foundation

Solar₂Chem

Conference

S₂C²

Strategic Agenda Development

Cluster for the sustainable development and innovation based on the Hydrogen Economy

Facilities

1,200 m^2 building with offices, laboratories and a unique workshop prepared to work with large ${\rm H_2}$ equipment.

635 kW wind 100 kW PV 62 kW PV (self-consumption)

250 kW alkaline, industrial scale

20 kW alkaline, test bench

5 kW PEM 15 kW AEM

ELY

- 7 kg (4000 L) @35 bar
- 23 kg (900 L) @350 bar
- HIGGS R&D Blending H2/GN

Hyundai Nexo & Kangoo ZE

Active Projects

R&D Department activities

- Hydrogen production, storage, transport & distribution, applications
- Proof of concepts
- Water electrolyser stack testing
- Hydrogen injection

4AirCRAFT-Air Carbon Recycling for Aviation Fuel Technology

- Funding Programme: H2020-EU.3.3.3. Alternative fuels and mobile energy sources
- Topic: LC-SC3-RES25-2020 International cooperation with Japan for Research and Innovation on advanced biofuels and alternative renewable fuels – Mission Innovation Challenge

Coordination: Aragon Hydrogen Foundation (FHa, Spain)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101022633. This work is supported by Japan Science and Technology Agency (JST) (Grant Agreement No JPMJSC2102) and São Paulo Research Foundation (FAPESP) (Grant number 2022/04751-0).

4AirCRAFT-Air Carbon Recycling for Aviation Fuel Technology

- Funding Programme: H2020-EU.3.3.3. Alternative fuels and mobile energy sources
- Topic: LC-SC3-RES25-2020 International cooperation with Japan for Research and Innovation on advanced biofuels and alternative renewable fuels – Mission Innovation Challenge

What is our motivation?

Unfortunately, **conventional technologies** often suffer from **low selectivity** and **conversion** while **lacking energy efficiency**.

Therefore, **new technology** solutions are required, in which the **rational design of catalytic materials** is a must.

What about the approach?

Hybrid cascade reactor technology - CO_2 conversion to long-chain hydrocarbons at mild conditions Proof of the concept \rightarrow TRL3

Materials

Research Activities

- Electrocatalyst
- Chemocatalysts
- Biocatalysts and Biomimetic catalysts
- Membranes and Electrodes
- Advanced Catalysts Carriers MOFs and nano→meso→macro structured and functionalized scaffolds

- Reactor design-Process Intensification
- Structural and mechanistic investigations
- Proof of the concept and Life Cycle Assessment (LCA)

Prof. K. TADANAGA

K. Tadanaga et al. J Asian Ceram Soc. 2023, 11.3, 406

CONFIDENTIAL

Electrocatalyst performance

$\frac{1}{1}$ Cell configuration for CO₂ reduction reaction (CO₂RR)

H

[∕]∕∕DED

Gaseous CO₂RR activity

Current density (*j*) & Faradaic efficiency (FE)

C. I. Ezeh et al., Ultrason. Sonochem. 2018, 40, 341; K. Tadanaga et al., Adv. Mater. 2010, 22, 4401; D. Zhou et al., Chem. Soc. Rev. 2021, 50, 8790; M. Li et al., J. Mater. Sci. 2019, 54, 9034; K. Iwase et al., ChemSusChem 2022, 15, e202102340. 17 www.4aircraft-project.eu – G.A. 101022633 – JPMJSC2102

19

CONFIDENTIAL

 Design and construction of a test bench to carry out tests and monitoring carbon dioxide flues.

 \checkmark Use of non-precious metal as catalysts.

 Development of a stage with great potential for the synthesis of industrial chemical processes.

Acknowledgement

Financial support from the T13-23R (the Aragón Government).

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101022633.

This work is supported by Japan Science and Technology Agency (JST) under Grant Agreement No JPMJSC2102.

This project is developed in the frame of a Mission Innovation Challenge supported by The Sao Paulo Research Foundation (FAPESP).

Eduardo Bernad Quílez

Aragon Hydrogen Foundation (FHa), ebernad@hidrogenoaragon.org PhD Candidate, Research & Development Department

www.4aircraft-project.eu

Thank you for your attention!