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Abstract: Hexavalent chromium (Cr(VI)) is a highly mobile cancerogenic and teratogenic heavy
metal ion. Among the varied technologies applied today to address chromium water pollution,
photocatalysis offers a rapid reduction of Cr(VI) to the less toxic Cr(III). In contrast to classic photo-
catalysts, Metal-Organic frameworks (MOFs) are porous semiconductors that can couple the Cr(VI)
to Cr(III) photoreduction to the chromium species immobilization. In this minireview, we wish to
discuss and analyze the state-of-the-art of MOFs for Cr(VI) detoxification and contextualizing it to the
most recent advances and strategies of MOFs for photocatalysis purposes. The minireview has been
structured in three sections: (i) a detailed discussion of the specific experimental techniques employed
to characterize MOF photocatalysts, (ii) a description and identification of the key characteristics of
MOFs for Cr(VI) photoreduction, and (iii) an outlook and perspective section in order to identify
future trends.

Keywords: Metal-Organic frameworks; photocatalysis; hexavalent; chromium; adsorption; water
remediation

1. Introduction

Hexavalent chromium (Cr(VI)) is a highly toxic metal that is stabilized as chromate
oxyanions in water (Figure 1). It induces well-known cancerogenic and teratogenic effects in
living organisms due to its oxidative nature. In addition, the environmental, ecotoxicology
and health impacts of Cr(VI) are intensified due to the industrial wastewater effluents
derived from diverse manufacturing processes such as leather tanning, cooling tower
blowdown, plating, electroplating, anodizing baths’ rinse waters, etc. [1–3].

Depending on the pH and redox potential of the water, chromium ions can be stabilized
in its hexavalent and trivalent forms, as visualized in the Pourbaix diagram (Figure 1).
In parallel, the chromium oxidation state, along with the acidity/basicity of the media
(i.e., pH), also governs the chromium speciation in water. Whilst trivalent chromium is
usually stabilized as cationic oxo-aquo species with octahedral environments, its hexavalent
form is usually found as neutral or negative oxyanions as tetrahedral H2CrO4, [HCrO4]−,
[CrO4]2n− and [Cr2O7]2n−.
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Figure 1. Pourbaix diagram of Cr. Reproduced from Denis Zihilin. Copyright CC BY-SA 3.0 License: 
https://creativecommons.org/licenses/by-sa/3.0/legalcode. “URL (accessed on 01 November 2022)”. 

Depending on the pH and redox potential of the water, chromium ions can be stabi-
lized in its hexavalent and trivalent forms, as visualized in the Pourbaix diagram (Figure 1). 
In parallel, the chromium oxidation state, along with the acidity/basicity of the media (i.e., 
pH), also governs the chromium speciation in water. Whilst trivalent chromium is usually 
stabilized as cationic oxo-aquo species with octahedral environments, its hexavalent form 
is usually found as neutral or negative oxyanions as tetrahedral H2CrO4, [HCrO4]-, 
[CrO4]2n− and [Cr2O7]2n−. 

The redox properties of Cr(VI) ions enable applying different strategies for its re-
moval through adsorption and photo-, chemo- or electroreduction [4–6]. Specifically, the 
most explored chromium removal technologies are precipitation–coagulation, ion ex-
change, membrane separation, adsorption, and reduction [7–11]. Among them, photoca-
talysis offers the possibility to rapidly reduce Cr(VI) to Cr(III) without the addition or 
production of any hazardous chemical by-product. Therefore, water remediation systems 
have to be able to capture and transform highly hazardous Cr(VI) into much less toxic 
Cr(III) species avoiding the release of chemical to the media [12]. 

1.1. Photocatalysis for Hexavalent Chromium Detoxification 
Photocatalysis is based on the generation of electron–hole pairs when a semiconductor 

is irradiated with a light source with an energy higher than its optical band gap (Figure 2a). 
The photogenerated charge carriers diffuse through the solid crystalline structure (Figure 2b), 
where they actively participate in varied redox reactions for the formation of reactive ox-
ygen species (ROSs) (Figure 2c) [13,14]. 

Figure 1. Pourbaix diagram of Cr. Reproduced from Denis Zihilin. Copyright CC BY-SA 3.0 License:
https://creativecommons.org/licenses/by-sa/3.0/legalcode. “URL (accessed on 1 November 2022)”.

The redox properties of Cr(VI) ions enable applying different strategies for its removal
through adsorption and photo-, chemo- or electroreduction [4–6]. Specifically, the most
explored chromium removal technologies are precipitation–coagulation, ion exchange,
membrane separation, adsorption, and reduction [7–11]. Among them, photocatalysis
offers the possibility to rapidly reduce Cr(VI) to Cr(III) without the addition or production
of any hazardous chemical by-product. Therefore, water remediation systems have to be
able to capture and transform highly hazardous Cr(VI) into much less toxic Cr(III) species
avoiding the release of chemical to the media [12].

1.1. Photocatalysis for Hexavalent Chromium Detoxification

Photocatalysis is based on the generation of electron–hole pairs when a semiconductor
is irradiated with a light source with an energy higher than its optical band gap (Fig-
ure 2a). The photogenerated charge carriers diffuse through the solid crystalline structure
(Figure 2b), where they actively participate in varied redox reactions for the formation of
reactive oxygen species (ROSs) (Figure 2c) [13,14].

The main aspects that describe a photocatalyst’s efficiency are (i) its capacity to harvest
light (optical band gap) (Figure 2a), (ii) the efficiency to generate electron–hole pairs during
illumination, and transport them through the crystal lattice preventing their recombination
(photoconduction) (Figure 2b), and (iii) the easy generation of ROSs at the photocatalyst–
water interphase, which in the end, are the ones that drive the oxidative and reductive
degradation or transformation of pollutants (Figure 2c). In this respect, photogenerated
electron–hole pairs, and as a consequence, some of the oxygen reactive species generated
from them at the interphase between the photocatalysts and the media, have enough
reduction potential to transform Cr(VI) into Cr(III) (Ev of Cr(VI)/Cr(III) redox pair is of +
0.51 V vs. NHE at pH 6.8) [15].

https://creativecommons.org/licenses/by-sa/3.0/legalcode
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Figure 2. Scheme of photocatalytic process on semiconductors. (a) Illustration of the optical band 
gap (EBg) of a semiconductor and the separation of electrons and holes during illumination. (b) 
Transport and recombination of electron and hole pairs in a photocatalyst. (c) Oxygen reactive spe-
cies generated due to the oxidation, reduction, deprotonation and dimerization reactions at the sur-
face of the photocatalysts. (d) pH dependence of one-electron redox of H2O, H2O2, and O2. Dotted 
line shows two-electron (2e-) process. Reproduced with permission of the American Chemical soci-
ety from reference 8. 

The main aspects that describe a photocatalyst’s efficiency are (i) its capacity to har-
vest light (optical band gap) (Figure 2a), (ii) the efficiency to generate electron–hole pairs 
during illumination, and transport them through the crystal lattice preventing their re-
combination (photoconduction) (Figure 2b), and (iii) the easy generation of ROSs at the 
photocatalyst–water interphase, which in the end, are the ones that drive the oxidative 
and reductive degradation or transformation of pollutants (Figure 2c). In this respect, pho-
togenerated electron–hole pairs, and as a consequence, some of the oxygen reactive spe-
cies generated from them at the interphase between the photocatalysts and the media, 
have enough reduction potential to transform Cr(VI) into Cr(III) (Ev of Cr(VI)/Cr(III) re-
dox pair is of + 0.51 V vs. NHE at pH 6.8) [15]. 

In parallel, the oxidative or reductive power of the hydroxyl (•OH), superoxide anion 
(O2•–), hydrogen peroxide (H2O2), singlet oxygen (1O2) or electron radicals generated at the 
photocatalyst–aqueous interphase are also responsible of the degradation or transfor-
mation of inorganic and organic chemicals [16]. For instance, in photocatalytic reactions 
for environmental remediation, numerous oxidizable compounds such as common or-
ganic pollutants or trivalent arsenic species are known [17–26]. In contrast, the reducible 
compounds are limited to alkyl halides, halogen oxoacids or the case of hexavalent chro-
mium explored in this review [27–32]. Therefore, the efficiency and selectivity over the 
formation of ROS is a key feature for photocatalyst evaluation [33]. Although the ROS 
quantification protocols are well established for inorganic photocatalysts, they have been 
rarely applied to MOFs [34,35]. For instance, it is foreseen that there will be some re-ad-
aptation of these protocols when applied for certain MOFs, since due to their porous na-
ture, the adsorption of model molecules could be significantly higher than in their parent 
inorganic photocatalysts. In that respect, the readers may consult the deep analysis devel-
oped by Y. Nosaka and Y. Nosaka to identify and quantify the generation of reactive ox-
ygen species by different experimental means [16]. 

As illustrated in Figure 2c,d, both oxygen reduction and oxidation reactions take 
place concurrently during photocatalysis. As a starting point of the pollutant’s degrada-
tion, a plethora of ROS with varied redox potentials are sequentially generated during 
illumination at the interphase between the photocatalysts and the surrounding aqueous 
media. The redox potentials are dependent on the pH, but also on the degree of the stabi-
lization energy when they are adsorbed at the surface or inner pore space. Therefore, the 

Figure 2. Scheme of photocatalytic process on semiconductors. (a) Illustration of the optical band gap
(EBg) of a semiconductor and the separation of electrons and holes during illumination. (b) Transport
and recombination of electron and hole pairs in a photocatalyst. (c) Oxygen reactive species generated
due to the oxidation, reduction, deprotonation and dimerization reactions at the surface of the
photocatalysts. (d) pH dependence of one-electron redox of H2O, H2O2, and O2. Dotted line shows
two-electron (2e−) process. Reproduced with permission of the American Chemical society from
reference [8].

In parallel, the oxidative or reductive power of the hydroxyl (•OH), superoxide anion
(O2
•−), hydrogen peroxide (H2O2), singlet oxygen (1O2) or electron radicals generated at

the photocatalyst–aqueous interphase are also responsible of the degradation or transfor-
mation of inorganic and organic chemicals [16]. For instance, in photocatalytic reactions for
environmental remediation, numerous oxidizable compounds such as common organic
pollutants or trivalent arsenic species are known [17–26]. In contrast, the reducible com-
pounds are limited to alkyl halides, halogen oxoacids or the case of hexavalent chromium
explored in this review [27–32]. Therefore, the efficiency and selectivity over the formation
of ROS is a key feature for photocatalyst evaluation [33]. Although the ROS quantification
protocols are well established for inorganic photocatalysts, they have been rarely applied to
MOFs [34,35]. For instance, it is foreseen that there will be some re-adaptation of these pro-
tocols when applied for certain MOFs, since due to their porous nature, the adsorption of
model molecules could be significantly higher than in their parent inorganic photocatalysts.
In that respect, the readers may consult the deep analysis developed by Y. Nosaka and
Y. Nosaka to identify and quantify the generation of reactive oxygen species by different
experimental means [16].

As illustrated in Figure 2c,d, both oxygen reduction and oxidation reactions take place
concurrently during photocatalysis. As a starting point of the pollutant’s degradation, a
plethora of ROS with varied redox potentials are sequentially generated during illumination
at the interphase between the photocatalysts and the surrounding aqueous media. The
redox potentials are dependent on the pH, but also on the degree of the stabilization energy
when they are adsorbed at the surface or inner pore space. Therefore, the chemical nature
of the photocatalysts plays a pivotal role in generating certain ROS, as well as modulating
their oxidative/reductive power when stabilized as adsorbed species at the surface of the
inner pore structure of the photocatalysts.

Considering photocatalysts with ideal characteristics for water remediation purposes,
to date, the most efficient class of materials are metal oxide semiconductors [34–37], chalco-
genides [38,39] and carbon nitrides [40]. Overall, the current state-of-the-art challenges of
photocatalysts for water remediation purposes are (i) widening the band gap to make the
semiconductors functional under visible-light illumination, (ii) circumventing the carrier
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recombination while boosting their separation, and (iii) increase their mobility through the
photocatalyst’s crystalline framework [41,42]. In this respect, doping and heterojunction
engineering have gained strong attention during recent years in order to improve the
carrier’s mobility [43–45]. Another important aspect is to endow the material with specific
surface chemistry able to retain the photo-transformed intermediate and final species [46].
Consequently, the intrinsic non-porous nature of inorganic photocatalysts has strongly
limited their ability to efficiently capture both the substrates and their oxidized or reduced
products of the photocatalytic reaction. This bottleneck is especially important in apply-
ing a photocatalyst for the Cr(VI) detoxification of water. For instance, when working
at acidic conditions, its well known that the photo-transformed Cr(III) species remains
soluble. Nevertheless, the evolution of Cr(III) concentration in solution is rarely monitored
in photocatalytic experiments carried out at acidic conditions [47].

1.2. Photocatalytic Materials for Hexavalent Chromium Reduction

Until today, a myriad of inorganic and organic photocatalytic materials have been
explored for the photoreduction of hexavalent chromium. These can be grouped mainly into
metal oxide semiconductors [48–52], chalcogenides [53–69], and carbon and nitride-based
materials [70–75].

Metal oxide semiconductors, such as ZnO, TiO2′ , CuO, WO3, NiO, NaTaO3, SnO2,
CeO2 and BiVO4, have been deeply investigated for photocatalysis, including the photore-
duction of Cr(VI) [48–52]. Overall, these materials display several practical benefits such as
high generation of reactive electron/hole pairs, good optical properties, and hydroxyl-rich
surface chemistry, which tends to improve the ROS generation. In addition, their chem-
ical stability makes them robust candidates for their long-term application. In contrasts,
classic semiconducting materials show a faster recombination of electron/hole pairs, low
surface area, and wide band gap. Multiple strategies have been explored to limit these
drawbacks. Photosensitization, doping, heterojunction construction of narrow-band gap
materials, design of plasmonic metal/semiconductor systems, fine control of morphologi-
cal features at the nanoscale, crystalline phase engineering, or surface chemical encoding
have been explored to extend their spectral absorption to the visible region of the solar
spectrum [53–57]. The combination of semiconductor materials to design heterojunctions
(i.e., CuO/ZnO, ZrO2/Fe3O4, WO3/TiO2, ZnO–TiO2, TiO2–Fe3O4, TiO2–Cu2O, NiO–TiO2,
La2CuO4/SnO2 [58–69]) able to outperform the individual components has been one of
the most widely studied approaches to improve the photoreduction capacity of these
classic materials. This improvement comes from a best harvesting of visible light and
the decreasing of photogenerated electron–hole recombination, ensuring stronger redox
capacity.

In parallel to metal oxides, chalcogenides have been also evaluated for the photocat-
alytic reduction of aqueous Cr(VI). Binary to multi-chalcogenides (i.e., MoS2, SnS2, CdS)
and chalcogenide-based heterostructures (i.e., CdS@TiO2, SnS2/TiO2 [70], Ag–Ag2S/TiO2,
SnS2/rGO [71] CuS/RGO, CdS/Gd2O3, ZnIn2S4/MoS2) have shown interesting perfor-
mances for the detoxification of hexavalent chromium from water. In comparison to
metal oxides, chalcogenides exhibit narrower-band gaps mainly attributed to their higher
conduction and valence band positions, although less efficient to produce hydroxyl radi-
cals [72], this makes them more efficient for absorbing in the visible light range favoring
their use under sunlight. However, their higher valence position becomes them inefficient
semiconductors to produce hydroxyl radicals.

Finally, carbon nanomaterials have also been used as catalysts for Cr (VI) photore-
duction. Derivatives of graphene materials [73] and graphitic carbon nitride (g-C3N4) [74]
stand out as one the most studied families. Particularly, some properties of graphene oxide
(GO) materials such as high surface area, low thickness of 2D nanosheets and excellent
electron transfer capability have allowed achieving good efficiency to Cr (VI) photocatalytic
reduction [75]. Both pristine m and reduced GO (r-GO) sheets can catalyze the chromium
photoreduction under sunlight/visible light. It is important to note that the performance of
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r-GO is lower than GO due to the intense transition to the semi-metal state of r-GO and low
density of the π electron in its surface [76]. On the other hand, hybrid materials synthesized
from GO and different semiconductors such as bismuth [77–79], metal oxides (ZnO [80–82],
TiO2 [83–87], WO3 [88,89], g-Fe3O4 [90]) carbon nitride [91], quantum dots [92,93], metal
sulphide [94–98], silver chromate [99], and metallophthalocyanines [100,101] have shown
even better photocatalytic efficiency to chromium reduction in comparison with the pristine
GO. The aforementioned behavior is attributed to the excellent conductivity of graphene
which allows a quick and easy movement of the photogenerated electrons between hybrid
materials, avoiding the recombination and consequently favoring the chromium reduction.
Additionally, it has been found that increasing the porosity of GO by r-GO incorporation
in those hybrid materials produced improved catalytic system performance due to a bet-
ter active site distribution. The main disadvantage of GO composite catalysts found in
chromium photoreduction is the industrial-scale production and reuse of these proposed
catalytic systems.

In parallel, g-C3N4 has shown even better photoreduction efficiency for Cr(VI) due
to its narrow band gap (∼2.7 eV) when applied under visible light [100–102]. Similar to
the metal oxide semiconductors, g-C3N4 have been improved by its surface and interface
engineering [74]. Recently, oxygen-, carbon- and sulphur-doped g-C3N4 or complex g-
C3N4-based heterojunctions Ag/Bi4O7/g-C3N4 [57] have shown an even narrower Ebg
between 1.87 eV and 2.58 eV. As a weakness, the carbon nitride system shows low stability
during photoreduction under exposure to high-intensity light irradiations.

1.3. Metal-Organic Frameworks as Dual Function Sorbent/Photocatalysts

One of the most appealing approaches to combine the concurrent photo-transformation
and adsorption of chromium species is the development of dual-function sorbent/ pho-
tocatalysts [15]. Among the porous materials that can fulfil this duality, Metal-Organic
frameworks (MOFs) stand out by their intrinsic high porosity, semiconductor nature, and
their high degree of structural and functional tunability [103–106]. MOFs are built up from
the assembly of inorganic metal oxo-units connected into three-dimensional frameworks
through organic linkers with a negative net charge (i.e., carboxylates, azolates, catechols,
phosphonates . . . ) [107–118]. By applying the principles of reticular chemistry, thousands
of MOFs with varied structures, topologies and functionalities have been reported. Among
their most relevant and unique characteristics, MOFs exhibit (i) high crystallinity, (ii) tun-
able porosity, (iii) large surface area, (iv) tailorable chemistry, and (v) interfacial charge
transfer properties that award them the character of a porous semiconductor under light
irradiation (Figure 3) [119,120].

More specifically, the photocatalytic functionalities of MOFs arise from their versa-
tility at compositional, chemical and porous structural levels (Figure 3) [121–123]. First,
MOF structures with almost all the first-row transition metals, alkaline and alkaline earth,
rare earth, and even actinide materials have been obtained to date [124,125]. Today, the
photocatalytic reduction of Cr(VI) to Cr(III) has been driven with MOF materials built up
from divalent (i.e., Zn(II), Cu(II), Co(II), Cd(II)), trivalent (i.e., Fe(III), Cr(III), In(III)) and
tetravalent (Zr(IV) and Ti(IV)) ions. It is important to highlight at this point the photo-
Fenton functionality of iron-based MOFs, since they add the photogeneration of radicals
arising from the oxidation/reduction of iron-metal clusters to the ones generated through
the hole/electron’s separation and transport due to their semiconductor nature.
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In addition, metal-exchange, trans-metalation or direct crystallization of multivariate
MTV-MOFs gives access to encoding complex variances of the metal sequence within the
inorganic nodes of MOFs (Figure 3) [126,127]. Needless to say, the nature and the variance
of the metals in the inorganic structural subunits can modulate the overall photocatalytic
properties of these porous materials. It is important to mention that this strategy has
not been explored yet for chromium photoreduction, although previous investigations
demonstrated the improvement in the photocatalytic activity as a consequence of the
metal-sequencing process. One of the most illustrative examples is the post-synthetic Ti
installation into the inorganic clusters of the (Zr)UiO-66 material [128–130]. The complexity
of metal sequencing in MTV-MOFs can be expanded up to the frontiers where the charge
neutrality and structural plasticity of the MOF structure allow. For example, sequencing of
up to 10 different metals encoded in the same MOF-74 structure has been reported, and in
some specific frameworks, the combination of mixed valence ions is also allowed until a
certain threshold [131].

Similarly, organic linkers within MOFs play a pivotal role on their light harvesting and
exciton generation and transport capacity. The versatility to decorate the chemical structure
of the linkers with electron donor or withdrawing groups, or to design the linker itself as
an antenna or chromophore to capture certain UV-Vis radiation, has been of paramount
importance to tune the light harvesting and carrier separation and transport in MOFs
(Figure 3) [132–134]. In the specific case of Cr(VI) photoreduction, the chemical structure
and functional groups installed into the organic linkers serve to modulate the adsorption
affinity of MOFs over hexavalent and trivalent chromium species, but also to tune their
light-harvesting and photoconduction efficiency [135]. Again, during the last few years, it
has been duly proved that the chemical variance introduced by the multivariate encoding
of the organic linkers within the ordered MOF structure can lead to cooperative or coupled
functionalities (Figure 3). For instance, multivariate reticular chemistry offers interesting
advantages to combine electron donors or withdrawing functions able to expand the band
gap to the visible range, and enhance the photoconduction of the MOFs’ three-dimensional
scaffolds [136]. Although this strategy has been rarely studied for Cr(VI) photoreduction,
the initial results seed the light to a promising perspective to further implement the MOF
potentials in this research area.

Similarly, the pore space of MOFs can be rationally encoded with specific functional
groups coming from the decoration of the inorganic and organic structural units or through
the encapsulation of metal, metal-oxide or metal sulphide nanoparticles, or complex poly-
oxoanionic species as wolframates, molybdates or vanadate-based units (Figure 3) [137].
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Although less explored for chromium photoreduction, the defect chemistry of MOFs, as
well as their porosity metrics, has a great impact on the Cr(VI) adsorption capacity and
kinetics. In addition, the local chemistry of linker-defective positions at the clusters can
endow the material with Lewis and/or Brønsted sites. The coordination environments of
these catalytic centers can be systematically varied in order to tune the catalytic activity.

Overall, the versatility of reticular materials offers multiple ways to tune the light
harvesting, charge mobility and transfer. Furthermore, the ability to generate reactive
oxygen species of MOF photocatalysts opens the room to coupling the oxidative processes
coming from ROS species with the adsorption of the substrates and the products of the
photocatalytic process in a pore space specifically designed for this function.

In parallel to the functionalization of the MOF scaffold, the development of heterojunction-
structured photocatalysts has been another main cornerstone to improve the efficiency of
MOF-based photocatalysts for Cr(VI) light-driven reduction. The combination of MOF
materials with inorganic or organic semiconductors/conductors into unique nanostruc-
tures expands the diversity of possible functions (adsorption, photoreduction, sensing,
signaling . . . ). The dissimilarity of the electronic structures of MOFs and inorganic/organic
photocatalysts allows engineered heterojunctions able to guide the electrons’ and holes’
separation and transport them during illumination [138,139].

Figure 4 summarizes different strategies that have been applied to engineer hetero-
junctions based on MOF materials. It is important to note at this point that not all the
possibilities shown in Figure 4 have been applied for Cr(VI) photoreduction.
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Generally speaking, two main routes have been established to achieve a heterostruc-
tured system: (i) semiconductor/conductor into the MOF’s pore space, and (ii) heterostruc-
tured materials based on core–shell, [140] core–antenna, 2D-assembly and 2D-supported
arrays [141,142]. If confined species are considered, the encapsulation of 0D inorganic
or organic nanoparticles or complexes has been widely applied for catalysis and photo-
catalysis purposes in general [143], but so far have not been deeply investigated for Cr(VI)
photoreduction. Recently, Z. Jiang et al. performed a controlled filling of the MIL-100 pores
with a TiO2 semiconductor, a milestone that opened the avenue to use a MOF’s pores as the
mould to shape complex three dimensionally connected sub-nanometer structures [144].
This impressive example overcomes by far the catalytic performance to reduce CO2 of the
mixture of TiO2 and MIL-100 components. Another elegant example is the polymerization
of the monomeric unit of electronic conductive polymers as PANI that has led to composite
materials able to harvest light and separate electron and hole pairs with outstanding effi-
ciencies [145]. Regarding the heterojunctions derived from MOF-based heterostructures,
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besides the main example shown in Figure 4, the complexity of these systems has steadily
increased, and today, patterned or 3D printed heterostructures are accessible to be obtained
at the lab scale [146–152]. In addition, the 2D and 3D structuration of the MOFs can open
the avenue to endow the systems of photonic properties that could be beneficial to further
boost the photocatalytic process and coupled it to an optical sensing of the target pollutant.

After reflecting the current state-of-the-art of MOF photocatalysts in general and
specific for Cr(VI) reduction, it is clear that current investigations mainly focus on the
modification of the inorganic clusters and/or organic linkers. Most of the applied func-
tionalization strategies for chromium photoreduction are based on one functional aspect.
However, recent investigations point out that site coupling or site cooperation functions can
be achieved by multivariate encoding the framework and the pore space in order to reach
multicomponent MOF systems for synergistic catalysis. The research of MOFs for Cr(VI)
photoreduction is positioned a step back in comparison to reticular materials applied for
gas adsorption or drug release, or even to other photocatalytic-related applications, such
as hydrogen generation, water splitting, or organic pollutant degradation. For instance,
during the last few years, the digital reticular chemistry concept has been expanding rapidly
to design complex tailored functionalities within porous frameworks [153,154].

After introducing photocatalysis for hexavalent chromium detoxification and MOFs
for the chromium photoreduction, we wish to discuss and analyze the efficient capture
and photo-transformation of Cr(VI) and Cr(III) ions with MOFs in three different sections:
(i) experimental procedures to determine the adsorption and photoreduction capacity of
MOFs over Cr(VI); (ii) describing the photocatalytic performance of MOFs’ build up from
divalent, trivalent and tetravalent metal ions; and (iii) giving a future perspective of MOFs
for chromium photoreduction. Although some reviews have been previously published
within this topic [155–157], our review covers the most recent significant advances in
the functionalization of MOFs for chromium photoreduction purposes, including a deep
understanding of the mechanisms that lead to an efficient capture and photo-transformation
of Cr(VI) and Cr(III) ions. Importantly, our minireview includes a comparison between
the-state-of-the-art designs of MOF-based photocatalysts and MOF catalysts applied to
other ends, and their possible adaptation to the specific case of Cr(VI) photoreduction is
discussed.

2. Experimental Protocols

In this section, we aim to highlight specific experimental protocols that are key to
assessing: (i) the chemical and hydrolytic stability of MOF photocatalysts, (ii) their photo-
chemical characterization, (iii) their adsorptive and photocatalytic performance, and finally,
(iv) their post-operation characterization.

2.1. Chemical Stability of MOFs

Intensive research has been conducted in order to determine the general rules govern-
ing the hydrolytic and chemical stability of MOFs. We advise reading the reviews published
by B. Liu et al. and N. C. Burtch et al. to gain a deep insight in that respect [158,159]. As
a general rule, the chemical stability of MOF materials is directly related to the chemical
strength of the metal–ligand bond, which in turn is ascribed to the “hard and soft (Lewis)
acids and bases (HSAB)” general principle. “Hard” applies to species which are small, have
high charge states and are weakly polarizable. “Soft” refers to species which are big, have
low charge states, and are strongly polarizable. That is, the strength of the metal–ligand
bond in the MOF will depend on the acidity/basicity strength/softness of the acid–metal
and of the base–ligand. More specifically, soft acids react faster and form stronger bonds
with soft bases, whereas hard acids react faster and form stronger bonds with hard bases.
Nevertheless, other factors far from the HSAB principle need to be considered as well, since
the nuclearity of the inorganic clusters, their connectivity through the organic linkers, and
the functions encoded within the organic linkers themselves have a great influence on the
chemical strength of the MOFs [160].
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Chemical and hydrolytic stability is one of the most important requirements to con-
sider when applying MOFs as photocatalysts in aqueous environments. A progressive
degradation of the MOF can lead to the loss of its efficiency, but in parallel, to the leakage
of the metals and organic linkers that form their structure to the water media. This is not a
minor issue when the environmental hazards of the organic molecules and the metal ions
forming the MOFs are taken into account [161,162].

Assessing the chemical stability of MOFs is also a delicate task that requires the use of
complementary characterization techniques (Figure 5). Most of the research studies to date
are based on the chemical stability assessment of X-ray diffraction. This is the first step
to assess if the crystallinity, and hence the long-range order of the crystalline structure, is
maintained (Figure 5a) or partially (Figure 5a(a.3)) or fully (Figure 5a(a.4)) lost when the
MOF material is exposed to the working conditions. Most of the studies have considered
that if the MOF material maintains its XRD signature after the functioning period, its
stability is proven (Figure 5a(a.1,a.2)). Nevertheless, it is important to note that this is an
oversimplified assumption, since N2 adsorption measurements confirm that some MOFs
that maintain their crystallinity exhibit a significant loss of porosity when immersed in
water (Figure 5a,b). Therefore, the assessment of the surface is the second characterization
checkpoint to assess whether the internal pore structure of the materials is maintained or
has been partially or completely disrupted during operation (Figure 5a,b). In parallel, a
partial dissolution during the adsorption or photocatalysis experiments could lead to a
significant leaching of the metal and/or linkers of the MOF, without leading to the loss
of the long-range order of its structure [163]. For instance, some studies have reported a
significant leaching of the metal ions (quantified by inductive-coupled plasma spectroscopy)
and of the organic linkers (quantified by the UV-Vis) when the MOFs are immersed in
a water solution of different acidity/basicity. Therefore, a complete description of the
chemical and hydrolytic stability of the MOFs requires a third characterization step where
the concentration of the metals or organic linkers in the operation media is monitored to
quantify the percentage of the MOF dissolved (Figure 5c). All the characterization protocols
described above are shown Figure 5, where red-, orange-, green-, and blue-colored data
have been used to illustrate the XRD, BET, and UV-Vis fingerprint of chemically robust,
intermediate, weak, and unstable MOF materials. It is important to note that while robust
and intermediate MOFs could exhibit the same XRD or BET curves after working conditions,
the less robust materials could lead to the release of some of its component to the media, as
illustrated by the UV-Vis spectra shown in Figure 5c.
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Figure 5. Illustration of the characterization techniques applied to determine the chemical stability
of MOFs. (a) X-ray diffraction patterns and (b) N2 adsorption isotherms of chemically robust-to-
unstable MOF materials. (c) UV-Vis spectra of the water solution after the leakage of organic linkers
of robust-to-unstable MOFs. * The UV-Vis spectra is done at the solution where the MOF material
has been in contact with, and not to the MOF material itself. The following color code has been
used to depict MOFs with different degrees of chemical stability: Blue—very robust, green—robust,
yellow—intermediate, red—unstable.
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2.2. Photochemical Characterization

The term “band gap” refers to the energy difference between the top and bottom
of the valence and conduction bands in a semiconductor. The electronic structure of
semiconductor materials determines the energy barrier between the conduction and valence
bands that is related to the energy input that is necessary for an electron to jump between
them. In the specific case of photocatalytic processes, the band gap determines the energy of
the photons (wavelength of the light source) that is needed to trigger the exciton generation
through the electron transfer from the valance to the conduction band [164,165].

When a photocatalyst has a large exciton-binding energy, it is possible for a photon
to have just barely enough energy to create a bound electron–hole pair, but not enough to
separate the electron and hole pairs. In this case, the optical band gap and the electrical
band gap (or “transport gap”) coincide. That is the case of most inorganic semiconductors.
In this case, the optical band gap is the threshold for photons to be absorbed, while the
transport gap is the threshold to separate electron–hole pairs.

In the specific case of most of the MOFs, due to the mismatch between the HOMO
and LUMO levels of the organic linkers and inorganic clusters, together with the strong
electron localization into these struts, their electronic structure is mainly governed by the
electronic structure of their separate constituents [166]. That is, significant differences are
found between their optical and transport band gaps of MOFs. Thus, the experimental
determination of both parameters is key to explaining the photocatalytic performance of
these materials.

The optical band gap of a solid material is determined via UV-Vis spectroscopy [167,168].
Heterogeneous catalysts are basically inspected as densely packed powders to measure the
scattering of photons using the Kubelka–Munk (K–M) equation, which describes the optical
properties of a photocatalyst sample by using an effective scattering (S) and absorption (K)
coefficient, as described in the Equations (1) and (2).

F(R∞) =
(1− R∞)2

2R∞
=

K
S

(1)

F(R∞) =
εC

S
= (2)

where

(R∞) =

(
RSample

)
(standar)

(3)

stands for the diffuse reflectance of dilute species determined by the Beer–Lambert law. For
instance, if a semiconductor powder of an “infinity” thickness is considered, the optical
band gap energy can be calculated by plotting:

αn = vs.}ω (4)

where n value depends on the indirect (i.e., 1
2 ) or direct (i.e., 2) nature of the band gap. More

specifically, the Tauc band gap model and the Tauc plots can be described on the basis of
Equations (5) and (6).

ω2 ∈2 ≈
(
}ω − Eg

)
2 (5)

α(}ω) ≈
(
}ω − Eg

)
(6)

The determination of the optical band gap is the first characterization step to un-
derstand the optical properties of a photocatalyst, information that afterwards will aid
adapting the source of illumination (i.e., wavelength equal or below to the optical band
gap energy) during the photocatalytic experiments. As an illustrative example, the Tauc
plot and the band gap calculation for two hypothetical MOFs are plotted Figure 6a. The
curves are plotted with blue and green colors to illustrate how the Ebg of the blue-colored
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curve is correlated with materials able to adsorb a wider energy of light wavelengths than
the one illustrated with a green color.
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On the other hand, X-ray photoelectron spectroscopy (XPS) and ultraviolet photoe-
lectron spectroscopy (UPS) techniques can be used to determine the energy of the valence 
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Figure 6. (a) Optical band gap energy calculation based on the Tauc plot fitting. (b) Determination
of the Fermi energy level via the fitting of the Mott–Schottky plot. (c) Photocurrent response of the
photocatalysts when illuminated. (d) Evolution of the cumulative quantity of reactive oxygen species
during illumination of the photocatalysts. All the characterization protocols are illustrated with the
hypothetical response of two model MOFs shown by blue- and green-colored curves. Dashed lines in
(a,b) plots represents the fitting of the experimental data to determine the optical band gap and the
Fermi levels of the photocatalysts. The solid and dashed lines in figure (d) represents the generation
of hydroxyl and superoxide radicals when the material is illuminated.

On the other hand, X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelec-
tron spectroscopy (UPS) techniques can be used to determine the energy of the valence
band (VB) [169–171]. From XPS spectra, it is possible to measure the values of the valence
band maximum (VBM)-binding energy. From the VB spectra, it is possible to linearly fit the
leading edge of the VB and the flat energy distribution to the VB spectrum, the intersection
of these two lines allows finding the VBM value, whilst the UPS spectrum is employed
to determine the width of binding energy (∆E) but gives the possibility to estimate, in
an indirect way, the VB. Herein, the width value of He is used as the standard. After
determining the ∆E of the studied material, the width of He (21.22 eV) is subtracted for
calculating the VB value.

Before the band gap characterization, Mott–Schottky and photocurrent experiments
give access to understanding the nature of the semiconducting process, and its efficiency
to separate and transport the electron and hole pairs. To this end, the photocatalyst is
usually integrated into an electron-conductive transparent electrode (usually an indium-
tin-oxide-coated glass slide). The system is connected in a three-electrode configuration (a
working electrode, Ag/AgCl reference electrode, and Pt counter electrode) while immersed
in a liquid electrolyte. For n-type semiconductors, Mott–Schottky plots exhibit a positive
and linear slope which is related to the flat-band potential versus the reference electrode.
The flat-band potential of the n-type semiconductor (intercept value at the x-axis) can
be used to estimate the conduction band (CB) of the semiconductor. By comparing the
potential of the conduction band, it can be estimated to what extent it is more negative
than the redox potential for a given reaction, such as the generation of radical oxygen
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species through the oxygen reduction (e.g., O2 → · O2
•−, −0.13 V vs. Ag/AgCl) or the

Cr(VI) to Cr(III) transformation (+1.15 V vs. Ag/AgCl) [172,173]. Just to illustrate one
of the possible scenarios, UiO-66-NH2 is one of the most studied MOFs for chromium
photoreduction, and the potential of its conduction band has been estimated to be close
to −0.5 V vs. Ag/AgCl. This potential is low enough to trigger the direct O2 → O2

•−

reduction, but it is not negative enough to face the two-electron reduction of water into
hydroxyl radicals at basic conditions (i.e.,−0.828 V vs. Ag/AgCl at pH 11.7—see Figure 2d).
Usually, as illustrated in Figure 6b, the slope of the Mott–Schottky curve is related to the
data obtained from the optical band gap, and in parallel, with the photocurrent experiments
of our model materials (Figure 6c).

Photocurrent experiments are performed with the same three-electrode configuration
used to measure the Mott–Schottky curves, but instead of scanning the variation in the
capacitance vs. the potential, the photocurrent response of the material in dark and
illumination conditions is measured in an open-circuit configuration mode. The absolute
value of the photoconduction (always normalized to the area of the working electrode)
is related to the capacity of the material to generate excitons and separate their electron
and hole components efficiently. In parallel, the profile of each single pulse (i.e., dark–
illumination–dark cycle) in photocurrent experiments also offers information about how
fast the material is able to respond to the illumination to generate and transport the
hole/electron pairs (Figure 6a,c).

Finally, the efficiency of the ROS to oxidize/reduce chemicals is also modulated by
their stabilization/coordination at the surface of the photocatalyst (Figure 6d). As an
illustrative example, TiO2-anatase semiconductor materials crystallized as nanoparticles
and nanotubes with different sizes, morphologies, and crystal facets show significantly
different capacities to generate ROS species during illumination. In the model MOF
materials used to illustrate the photochemical characterization strategy described in this
review, even though the band gap and electroconduction of the MOF illustrated by the
blue-colored curves of Figure 6a–c are better than the ones of the MOF model of the green
curves, the generation of ROS species could be not directly related to these factors, as shown
in Figure 6d. As mentioned before, although ROS quantification protocols have long been
established for inorganic photocatalysts, their application to Metal-Organic framework
materials is still scarce [174,175]. As a general rule, most of the applied protocols to
indirectly determine the ROS generation are the addition of oxygen radicals or electron or
hole scavengers. Thus, their effects on the photocatalytic reaction give an indirect clue of
the radicals involved in the process. Just to mention one of the multiple examples reported
in the bibliography, p-Benzoquinone (PBQ), sodium oxalate (Na2C2O4), tert-butyl alcohol
(TBA), 2,2,6,6-tetramethylpiperidine (TEMP), and sodium iodate (NaIO3) can be used as
O2
•−, holes, •OH, [1] O2, and electron scavengers in the solution [176,177].

Electron paramagnetic resonance (EPR) spectroscopy performed in specific spin trap
molecules has been applied to qualitatively detect the •OH, 1O2, and O2

•− radicals gen-
erated by MOF photocatalysts [178]. The quantification of the radical generation during
illumination conditions has been mainly reported for MOFs applied for photodynamic
therapies [179,180] but it is starting to be applied for MOFs that are used for environmen-
tal purposes. Quantification of ROS is performed by colorimetric and fluorescence probe
methodologies, where the concentration of the ROS is linked to the absorbance/fluorescence
gain or loss or specific probe molecules. When selecting the protocol, it is important to
consider the selectivity of the probe chromophore or luminescence probe over the target
ROS, as well as their potential adsorption in the MOF, and their time and chemical stability.

To gain a broader perspective of the ROS detection and quantification protocols, we
advise reading the review of Nosaka et al. [16]. It is important to note that ROS detection
has been largely overridden in chromium photoreduction studies performed with MOFs.
Due to the fact that the Cr(VI) to Cr(III) reaction is electron-consuming, the efficiency of a
photocatalyst to reduce Cr(VI) is usually associated with its capacity to donate electrons to
the Cr(VI) oxyanions. Nevertheless, the ROS generation involves oxidative paths that can
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serve as a secondary electron source that can participate in side reactions during the Cr(VI)
photoreduction process [181].

2.3. Adsorption Kinetics/Capacity and Photocatalysis

Before performing the Cr(VI) to Cr(III) photoreduction experiments, it is important to
evaluate the adsorption kinetics and capacity of the MOF photocatalysts to uptake Cr(VI)
and Cr(III) ions in dark conditions. This initial characterization step will help to iden-
tify the experimental conditions of the photocatalysis experiments (i.e., initial chromium
concentration, MOF loading, adsorption time in dark conditions . . . ) (Figure 7).
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Figure 7. (a) Optical band gap energy calculation based on the Tauc plot fitting. (b) Determination
of the Fermi energy level via the fitting of the Mott–Schottky plot. (c) Photocurrent response of the
photocatalysts when illuminated. (d) Evolution of the cumulative quantity of reactive oxygen species
during illumination of the photocatalysts. Blue-colored curves illustrate the response of a model
MOF with a high adsorption capacity over Cr(VI) and a negligible adsorption affinity over Cr(III).
Opposite, green-colored curves illustrate the performance of a MOF able to capture both Cr(VI) and
Cr(III) species.

In addition, the development of batch experiments to determine the adsorption ca-
pacity and kinetics of MOFs over Cr(VI) and Cr(III) ions give highly valuable information
to understand to what extent these dual sorbent/photocatalysts are able to capture these
species during the Cr(VI) to Cr(III) photoreduction process (Figure 7a,b) [182,183]. It is
important to keep in mind that Cr(III) ions are only soluble at acidic conditions, so ad-
sorption needs to be assessed at pHs < 4 (this acidity value also depends on the Cr(III)
concentration). Adsorption isotherms are obtained from batch experiments where a known
amount of MOF photocatalyst is immersed in model single-element chromium solutions
of increasing concentrations. In parallel, the kinetics of adsorption are obtained by moni-
toring the time evolution of the chromium concentration during the adsorption process
(Figure 7b). Usually, MOFs show a rapid one-step adsorption over metal ions, capturing
most of the species from the solution during the initial stage of the process (below 30
min). Afterwards, the adsorption kinetics is gradually slowed down until equilibrium is
reached (usually ~2–4 h). Both experimental data (kinetics and adsorption isotherms) can
be fitted on the basis of different models (i.e., Langmuir, Freundlich, pseudo-first- and
pseudo-second-order kinetics . . . ) that parametrize the adsorbing capacity and affinity
of the sorbent for the substrate [184–188]. Overall, the isotherms’ fitting gives access to
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quantifying the maximum adsorption capacity, as well as the adsorbate–adsorbent affinity
of the MOF over a specific substrate. In parallel, the fitting obtained from kinetic models
allows quantifying the rate of the process. In Figure 7a,b, two kinetic and isotherm curves
for the adsorption of Cr(VI) and Cr(III) species by two model MOFs are illustrated. The
blue-colored curves show the response of MOF materials with a high affinity to capture
Cr(VI) species and a negligible capacity to adsorb Cr(III), while the green-colored curves
illustrate the response of a MOF with intermediate affinities and capacity to capture both
species. The surface area, pore window aperture, and presence of preferential adsorption
points within the MOF structure are some of the characteristics that will shape their kinetic
and isotherm adsorption profiles. That is, both the adsorption capacity and affinity of the
MOFs over chromium will be shaped by the fast diffusion paths across the framework, and
by the density and chemico-physical affinity of preferential adsorption sites over chromate
oxyanions or trivalent chromium cationic species.

After the equilibrium during the adsorption stage is reached, the photocatalysis
process is triggered by illumination. It is well known that the wavelength energy of the
light source is key to enhancing the electron and hole separation within the semiconductor
materials. For instance, the energy input needs to be higher than the band gap of the
semiconductor to trigger the process. Nowadays, the photocatalytic reactors allow tuning
easily the source of light used to perform the experiments. For instance, a broad scope of
lamps, light-emitting diodes (LEDs), and laser sources are available to select the range of
wavelengths (i.e., lamps and LEDs) or the specific wavelength (i.e., laser) to perform the
experiment. It is important to mention that performing the photocatalysis experiments
under different light sources opens the perspective to understand the photocatalyst’s
performance, but from the application perspective for water remediation purposes, the
use of a light source with a spectral fingerprint close to the one of the sunlight is highly
desired [189–191].

Besides illumination source, there are varied but important parameters that have a
great influence on the Cr(VI) to Cr(III) photoreduction process: the loading of the catalysts
(i.e., with a usual operative window between 0.25 and 1.0 g·L−1); the initial Cr(VI) concen-
tration after reaching the adsorption equilibrium in dark conditions; the acidity/basicity of
the aqueous media; or the presence of competitor species as chloride, sulphate, or carbonate
anions. The latter three parameters, and especially the pH, affect the hexavalent chromium
speciation in solution, and hence the affinity of the MOFs to adsorb and photo-transform
them into trivalent chromium. MOF materials with negative surface charge could elec-
trostatically repel the Cr2O7

2− anions, avoiding their adsorption. In contrast, when the
pH value is below the isoelectric point of the photocatalyst, the zeta potential of this is
positive; therefore, the positively charged surface of the catalyst can be expected to provide
better adsorption performance for Cr2O7

2− anions, and in parallel, the best photocatalytic
behavior is observed (Figure 7c,d).

All the parameters that affect the photocatalysis also have a correlative influence
during the oxidative and reductive radicals’ generation by the MOF semiconductors.
Although many experimental procedures have been reported for inorganic photocatalysts to
directly or indirectly measure the radicals generated during illumination, their application
to MOF materials is still limited.

Last but not least, the quantification of the chromium concentration during the adsorp-
tion and photocatalysis experiments is also a key aspect. The concentration of hexavalent
chromium can be determined by means of the diphenyl carbazide protocol, via the ab-
sorbance at a specific wavelength of the UV-Vis spectra of the chromate solution, or by
inductively coupled plasma spectroscopy. The latter one is the most used experimental
procedure to determine the overall chromium concentration (i.e., Cr(VI) + Cr(III)) before,
during, and after the adsorption and photocatalysis experiments. For instance, during
adsorption, no change on the oxidation state of the chromium ions in the aqueous solution
is expected, although recent findings point out that specific MOF functionalities can lead
to a chemical reduction of the Cr(VI) to Cr(III) once the ions are immobilized within the
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pore structure of these materials. To measure the concentration of Cr(VI) and Cr(III) ions is
another important aspect in order to unravel if the photoreduced Cr(III) ions are stabilized
within the dual sorbent/photocatalyst or are leached to the media after their transforma-
tion (Figure 7a,c,d). It is necessary to determine the Cr(VI) concentration by means of the
diphenyl carbazide protocol, and in parallel, the overall chromium concentration through
ICP-AES analyses. The difference between these two values gives access to determining
the evolution of the Cr(III) content into the aqueous solution during the photocatalysis
experiment.

Taking into account all these abovementioned factors, the two possible responses of
MOF photocatalysts during chromium photoreduction are illustrated in Figure 7c,d. In
Figure 7c, the MOF is able to efficiently photo-reduce the Cr(VI) to Cr(III), but due to its
negligible capacity to adsorb Cr(III), this is released to the media during photocatalysis.
Opposite, in Figure 7d, the response of a model MOF that is able both to photo-transform the
Cr(VI) to Cr(III), and in parallel, to adsorb the photogenerated Cr(III) species, is illustrated.

2.4. Post-Operation Characterization

Besides the usual experimental techniques applied to characterize MOFs before and
after operation (i.e., X-ray diffraction, N2 adsorption isotherms, IR, H-NMR, thermogravi-
metric analysis . . . ), X-ray photoelectron spectroscopy (XPS), solid UV-Vis, IR and electronic
paramagnetic spectroscopies (EPR), and X-ray absorption (XAS) play an important role in
unraveling the chromium oxidation state, coordination environment, and bridging modes
to the MOF host structure, once they are immobilized within the porous frameworks. XPS
is one of the most employed techniques to study both the binding energies of the chromium
ions and of the MOF structure after adsorption or photocatalytic experiments. For instance,
the binding energies of Cr2p are slightly different for Cr(III) and Cr(VI) ions, allowing
their differentiation by a careful fitting of the spectra. This is schematically illustrated
in Figure 8a, where the contribution of Cr(III) and Cr(VI) ions to the overall XPS spectra
is highlighted with different colors. In addition, it is important as well to follow up the
binding energies of the Zr(IV) ions, oxygen atoms of the hydroxyl groups located within
the zirconium hexanuclear units, as well as any functional group (e.g., NH2, OH, NO2, SO3
. . . ) encoded within the organic linkers of the MOF [192]. Depending on the adsorption
mechanisms, the chromium ions could alter the binding energies of these specific functions
within the MOF involved in the chemisorption, adsorption, chemical reduction, or photore-
duction process (Figure 8a. These subtle variations in the local functionalities of the MOFs
have been followed as well by other spectroscopic characterization techniques such as IR,
Raman, or Mossbauer spectroscopy [193].

The color dependence of chromium ion species on their oxidation state and coor-
dination environment opens the opportunity to study their speciation by solid UV-Vis
spectroscopy. For instance, hexavalent chromate oxyanions exhibit a characteristic orange
color that gives rise to UV-Vis bands located at ~35,000 cm−1 (~285 nm) and 27,000 cm−1

(~370 nm). This signal is attributed to the Cr6+-O2− charge transfer for mono-chromate
species. When a chemical of a photoreduction process occurs within the MOF, Cr(III) ions
are stabilized within the framework. As a result, the material acquires the usual green color
associated with trivalent chromium species. UV-Vis spectra of the MOF after the chromium
immobilization can help to identify and semi-quantify these species, since the UV-Vis spec-
tra can exhibit the characteristic signals associated with the spin-allowed d–d transitions of
an octahedral coordinated Cr3+d7, 4A2g(F)→ 4T1g(F) (~23,000–24,000 cm−1/~435–417 nm)
and 4A2g(F)→ 4T2g(F) (~20,000–17,500 cm−1/~500–571 nm) (Figure 8b) [194]. The model
UV-Vis fingerprint of Cr(VI) and Cr(III) ions, found once installed in MOFs, is depicted in
Figure 8b.
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Figure 8. Illustration of the (a) XPS and (b) UV-Vis spectra of Cr(VI) and Cr(III) species stabilized
within MOFs. (c,d) EPR spectral fingerprints arising from Cr(III) (c) and Cr(V) (d) species stabilized
within MOFs after adsorption and photocatalysis. (e) X-ray adsorption near-edge structure of Cr(VI)
and Cr(III) species, and the illustration of (f) the radial distances’ distribution obtained from the
treatment of X-ray absorption data. Green-, orange-, and red-colored lines have been used to illustrate
the signature of Cr(III), Cr(VI), and Cr(V) ions in the different plots. Dashed lines in the figure (a)
stands out for the fitting of the XPS data to the contributions of Cr(VI) and Cr(III) ions.

In a parallel approach, EPR spectroscopy can be applied to find out the presence of
trivalent chromium. Figure 8c and d illustrate the main EPR signals that can be found
for the Cr(III) isolated species (δ-signal), Cr(III) clustered species (β-signal), and Cr(V)
transient species (γ-signal). For instance, depending on the experimental data, the presence
of isolated or clustered CrIII ions can be differentiated by EPR spectroscopy (Figure 8c).
Furthermore, EPR gives access to determining if pentavalent chromium species are also
stabilized within the MOF as well (Figure 8a,c). For a more detailed analysis of the
chromium speciation by EPR, we advise reading the work of P.G-Saiz et al. [195–197].

Finally, X-ray absorption is the forefront experimental procedure not only to unravel
the oxidation state of the chromium ion before, during, and after operation, but the local
structure when immobilized in the Metal-Organic framework porous structure. The term
X-ray absorption fine structure (XAFS) is used to refer collectively to both the X-ray ab-
sorption near-edge structure (XANES) and the extended X-ray absorption fine structure
(EXAFS) regions [198,199]. These two regions are differentiated on the basis of the dominant
electronic processes in each region. In the XANES region, the multi-scattering of outgo-
ing and backscattered photoelectron waves between absorber Cr atoms and surrounding
atoms shapes the main adsorption edge of the XAS spectra. In contrast, the EXAFS region
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is dominated by the interferences between singly scattered outgoing and backscattered
photoelectron waves that cause most of the oscillatory features of this high-energy region
of the spectra.

Although this technique has not been applied to study MOFs for chromium adsorption
or photoreductions, it has the potential to unravel the local coordination environment and
structure of metal ions adsorbed or installed by post-synthetic procedures (i.e., metalation,
chemical vapor deposition . . . ). XAS has been applied in other sorbents to follow up
the Cr(VI) capture and transformation by studying the near-edge structure of the X-ray
absorption spectra (XANES) [200]. For hexavalent chromate anions, a prominent pre-edge
peak at 5990 eV is usually observed, which arises from a bound-state 1s to 3d transition,
allowed for non-centrosymmetric Cr(VI)O4 and forbidden for centrosymmetric Cr(III)O6
octahedra. The size of this pre-edge peak can be used to quantify the proportion of
Cr(VI) in a sample if the Cr(VI) fraction makes up greater than ~1–5% of the total Cr
present. In the case of Cr(III) ions, small pre-edge features are present for octahedral
Cr(III) at 5990.5 and 5993.5 eV due to 1s to 3d(t2g) and ls to 3d(eg) electronic transitions,
respectively (Figure 8a,d). The EXAFS oscillatory fingerprint of the XAS spectra can be
fitted by simulating the atomic scattering amplitudes and phase shifts (FEFF) of given local
structural models for chromium species. Usually, the structural information of known
Cr(VI)- and Cr(III)-based compounds is used as the starting point of the fitting process.
Usually, both the number of neighboring atoms (N) and their distance, Å, from the absorber
Cr atom can be accurately calculated with an accuracy equal to or below 0.03 Å. In addition,
for some cases, the Debye–Waller factors (i.e., static and vibrational atomic disorder) can be
obtained as well from the EXAFS fitting. Figure 8e,f illustrate the model XANES spectra of
Cr(VI) and Cr(III) ions (Figure 8e), and of the possible radial bond distances’ distribution
obtained from the XAS data treatment (Figure 8f).

3. Metal-Organic Frameworks for Hexavalent Chromium Photoreduction and Capture

Here, we wish to discuss the most relevant investigations carried out with (i) divalent,
(ii) trivalent, and (iii) tetravalent metal-based MOFs for chromium photoreduction. Within
these three subsections, the state-of-the-art of MOF technology for chromium detoxification
of waters will be comprehensive analyzed. Furthermore, we wish to highlight the mile-
stones achieved within this area, and compare them to the most recent reticular material
developments for adsorption, catalysis, and photocatalysis.

3.1. Divalent Metal-Based Metal-Organic Framework Photocatalysts

Considering the photocatalytic ability of a ZnO semiconductor, the use of Zn-based
MOFs in the photoreduction of chromium has been a natural step of exploration as a first ap-
proach to test the feasibility of MOF photocatalysts for hexavalent chromium detoxification
(Table 1).

The research on Cr(VI) photoreduction is limited to ZIF-8, BUC-21 (Zn(II)/anthracene),
and NNU-36 materials and their composite structures when combined with inorganic
semiconductors. In the specific case of the well-known ZIF-8 zeolitic imidazole framework
(ZIF), although active for Cr(VI) photoreduction, its wide band gap (5.2 eV) severely limits
its efficiency to harvest light and trigger the photocatalytic process. A band gap narrowing
has been achieved by engineering Zn-MOF based on chromophore carboxyl-based organic
linkers with aromatic ring systems. First, BUC-21, which is a Zn-MOF build up from
Zn-paddlewheel and 1,3-dibenzyl-2-imidazolidone-4,5-dicarboxylic acid square planar
“carboxylate-metal organic layers” pillared by a 4,4′-bipyridine (bpy) secondary linker, has
been studied. The coordination environment of the paddlewheel units differs significantly
from the one shown by the Zn(II) ions in ZIF-8, also inducing a shift in the optical band gap
to 3.4 eV. The material exhibits a better Cr(VI) photoreduction response in comparison to
the ZIF-8. Surprisingly, even if the long-term hydrolytic stability of Zn-MOFs is in question,
BUC-21 exhibits excellent reusability [201].
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Table 1. Divalent-metal-based MOF photocatalysts for Cr(VI) to Cr(III) reduction.

Metal
Center MOFs pH Light

Source
[Cr (VI)]0

(ppms)

Photocatalyst
Loading

(g/L)

Photo-Oxidation
Efficiency

Ref.Removal
Percentage (%)

Time
(min)

Zn

ZnO@ZIF-8 7 UV 20 1 88 240 [202]

ZIF-8@Cd0.5Zn0.5S 6 Vis. 20 1 100 10 [203]

MoO3@ZIF-8 Vis. 20 0.5 96 40 [204]

ZIF-8@CuPd 1 Vis. 20 0.20 89 60 [205]

BUC-21 2 UV 10 0.75 96 30 [205]

TNT@BUC-21 5 UV 10 0.16 100 20 [206]

BUC-21 and g-C3N4 2 SL 10 0.25 100 60 [207]

BUC-21 and Bi24O31Br10 2 Vis. 10 0.25 99 120 [208]

NNU-36 2 Vis. 10 0.38 95.3 60 [209]

MOF-Zn-BPEA 3 Vis. 10 0.38 92 50 [210]

Zn-MOF [a] 2 SL 20 1 93 90 [206]

MIL-101/Pd-Cu NR Vis. NR NR 100 30 [211]

Zn-PA-MOF 2–6 UV 20 0.4 98 90 [212]

Cd BUC-66
2 UV 10 0.075

98 30 [213,214]Co BUC-67 99 30

Cd Cd(4-Hptz)2.(H2O)2]n 3 UV 10 0.175 100 50 [210]

[a] 1 mL EtOH as scavenger. Vis. = visible light, SL = sun light, WL = white light.

Representing a step forward, the incorporation of visible-light-responsive bipyridine-
like linkers, such as 9,10-bis(4-pyridylethynyl)-anthracene (BPEA) acting as a pillars of
2D Zn-carboxylate layers, allows expanding the optical band gap of pillared MOFs to the
visible-light region, and thus improving the photocatalytic efficiency of the material under
sunlight illumination [215].

The photocatalytic activity of Zn-MOFs is not only limited to robust 3D and 3D porous
structures, but to one-dimensional ladder-like Zn(II)/BPEA coordination polymers [216].
The incorporation of a chromophore ligand is a well-known and widely applied strategy
to tune the visible-light-harvesting capacity of MOF and, thus, improve their Cr(VI) pho-
toreduction efficiency. The luminescence properties of anthracene-like organic linkers have
been applied as well to detect hexavalent chromium as the presence of chromate anions
induces a quenching of the luminescence signal. Although scarcely explored, other divalent
Cd(II) [213], Co(II) [214], and Cu(II) [217] MOFs have been also successfully tested for
hexavalent chromium photoreduction purposes. In terms of band gap energy, there is a
clear advantage when applying Co(II)- or Cu(II)-based MOFs for photocatalysis, since their
light-harvesting capacity is shifted to the visible range. In addition, copper is a well-known
active metal center for the oxidative catalytic degradation of organic pollutants such as
phenols. For instance, as the oxidative degradation by copper sites depends on the gen-
eration of oxygen radicals such as hydrogen peroxide, exciton generation through light
illumination can induce an enhancement in ROS generation, Cu center activation, and
finally, organic pollutant oxidation [218–220].

The engineering of MOF-based heterojunctions has allowed tuning the optical band
gap energy to visible-light capture and improving the overall properties and photocatalytic
performance of Zn-MOFs. The soft synthesis conditions of divalent MOFs make the in situ
growing of the MOF at the surface of different materials relatively straightforward [150].
Three are the main strategies that have been explored to construct heterostructured MOF
materials for chromium photoreduction:



Nanomaterials 2022, 12, 4263 19 of 48

(i) The physical mixture through ball milling of MOF and other semiconductor inorganic
or carbon-based materials (i.e., Bi24O31Br10 nanoparticles, and graphitic carbon nitride
(g-C3N4); (Figure 9a—Table 1).

(ii) The direct growth of metal or sulphide nanoparticles at the surface of the ZIF-8
nanosized crystals (i.e., ZIF-8@CuPd [221] and ZIF-8@Cd0.5Zn0.5S [222]) (Figure 9b,
Table 1).

(iii) The generation of semiconductor–MOF core–shell structures (i.e., ZnO@ZIF-8 nanopar-
ticles, MoO3/ZIF-8 nanowires, and TiO2@BUC-21 nanotubes (Figure 9c, Table 1).
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nanowires. Figures adapted from references [125–127].

In general terms, heterojunctions obtained from MOFs and inorganic/organic semicon-
ductors lead to a shift in the optical band gap energy to the visible-light energy range that
improves the light-harvesting capacity of these composites in comparison to their individ-
ual components. Merging the electronic structures at the interphase between the MOF and
classic semiconductor materials also leads to improved photoconduction of the composites
in comparison to their parent components. For some cases, the composite materials have
been revealed as multifunctional photocatalysts able to couple the chromium photoreduc-
tion to the photo-oxidation of organic pollutants as methylene blue dye (Figure 9—Table 1).

Although the chemical stability of the Zn-MOFs under the working conditions usually
employed in photocatalysis have been confirmed in many works through X-ray diffraction
after operation, and the recyclability of some of the Zn-MOFs indicates that a minor loss of
activity is observed, it is important to be cautious when evaluating these conclusions, even
when an important number of the studies have been performed at low-pH conditions. As
explained before, the chemical and hydrolytic stability of Zn-carboxylate and Zn-imidazole
bridges are limited, especially at acidic conditions, and the Zn-MOFs usually lose their
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porosity and long-range ordering when exposed to moisture conditions or immersed in
water in the short- to mid-term. So, even if the materials could resist the chemico-physical
conditions of the Cr(VI) to Cr(III) reactions in usual experiments carried out at lab-scale,
this does not preclude the MOF being partially dissolved or disintegrated during the
process. The environmental impact of a partial leaching of the MOF during the operation
will depend on the toxicity of their components, which is especially concerning when
sophisticated organic linkers based on aromatic rings or pyridyl moieties are used to build
up the MOF structure.

3.2. Trivalent-Metal-Based Metal-Organic Framework Photocatalysts

Among the trivalent transition metals employed for the synthesis of MOFs, iron,
chromium, and aluminum are the most investigated ones (Table 2). Depending on the
synthesis conditions and the connectivity and functional groups of the organic linkers,
Fe(III), Al(III), and Cr(III)-MOFs can crystallize in a wide variety of structures with high-to-
intermediate hydrolytic and chemical stabilities (Figure 10).

Table 2. Trivalent-metal-based MOF photocatalysts for Cr(VI) to Cr(III) reduction.

Metal MOFs pH Light
Source *

[Cr (VI)]0
Loading

(g/L)

Photo-Oxidation
Efficiency Ref.

Efficiency (%) Time (min)

Fe

MIL-53 4 Vis. 20 1 100 40 [223]

MIL-88B-NH2
2 Vis. 8 0.5

100 45
[224]MIL-53-NH2 15 60

MIL-101-NH2 100 60

MIL-100/HPMo 5% 4 Vis. 20 1 100 8 [225]

MIL-53/rGO 4 Vis. 20 1 100 80 [226]

MIL-100/Au 1%
4 Vis. 20 1

20
[227]MIL-100/Pd 1% 100 16

MIL-100/Pt 1% 8

MIL-68/AgBr 30%/Ag 1.5% 4 Vis. 20 0.25 99.9 6 [228]

MIL-88B-NH2/Ag/AgCl 2 - 20 0.5 85.7 45 [229]

MIL 53/g-C3N4 3% 2–3 Vis. 10 0.4 100 180 [230]

MIL-101-NH2 10%/g-C3N4 2–3 Vis. 10 0.5 76.0 60 [231]

MIL-101-NH2/g-C3N4
7

SL 20 1
66

90 [232]2 91

MIL-68 3 Vis. 20 0.25 100 5 [233]

MIL-53/WO3 2.5 SL 45 1 94 240 [234]

MIL-100/WO3 80 wt.%/120 2 LED-Vis 5 0.25 100 60 [235]

NH2-MIL 88B/TiO2 7 Vis. 10 0.5 98.6 35 [201]

MIL-53/Bi12O17Cl2 100 mg 2 WL 10 0.5 99.2 120 [236]

MIL-100/Bi12O17Cl2 200 mg 2 WL 10 0.5 99.3 120 [237]

MIL-100/PANI 9% 2 WL 10 0.25 100 90 [238]

Fe-MOF/MoS2 1.5% 2 Vis. 20 1 98.8 60 [215]

MIL-53
4 Vis. 20 0.5

51 30

[216]MIL-53/CQDs/2% Au 100 20
MIL-53/CQDs/2% Ag - -
MIL-53/CQDs/2% Pd 80 30

MIL-101-NH2/Sand-Cl (50%) 2 Vis.
(1000 W) 20 1.0 98.8 60 [239]

MIL-101-NH2/Al2O3 2 SL 5 0.3 100 8 [240]

STA-12-Mn-Fe 2 SL 20 0.25 100 30 [241]

MIL-125-NH2/BiO 2 Vis. 40 1 100 120 [242]
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Table 2. Cont.

Metal MOFs pH Light
Source *

[Cr (VI)]0
Loading

(g/L)

Photo-Oxidation
Efficiency Ref.

Efficiency (%) Time (min)

Cr
MIL-101/Pt

NR Vis. NR NR 100
40 [243]MIL-101/Pd 240

MIL-101/Pd-Cu NR Vis. NR NR 100 30 [211]

In
MIL-68 2 Vis. 20 1 97 180 [244]

MIL-68-NH2/In0.4Fe0.6 2 Vis. 20 0.4 99 120 [245]

* Vis. = visible light, SL = sun light, WL = white light.

Figure 10. Inorganic structural units found in trivalent MOFs used for metal ion recovery in aqueous
media. (a) M3(µ3-O)(R–CO2)6AlS2 (A = Cl, OH, F) trimers; S = Solvent (b), M3(µ3-O)(R–CO2)6A1

trimer after solvent removal (c), M3(µ3-O)(R–CO2)6Al(en)2; trimers after their decoration with en
(ethylenediamine) molecules, (d) [M(µ2-A)(R–CO2)2]n chains. Crystal structures of (e) MIL-100,
(f) MIL-88, and (g) MIL-53 materials.

Although Fe-MOFs exhibit lower chemical and hydrolytic stability than chromium
and aluminum homologues, this family of MOFs has been the most profoundly explored
in terms of their photocatalytic activity to face hexavalent chromium pollution. The cost-
effectiveness, facile fabrication, environmental friendliness, and excellent photosensitivity
of the Fe-MOFs make these materials highly appealing for environmental remediation
purposes. Even if the chemical strength of Fe-MOFs is lower than chromium, aluminum,
or zirconium homologues, the environmental risks derived from the leakage of their com-
ponents to water media is null or very low if the adequate organic linkers are selected.
Furthermore, in addition to the usual photocatalytic mechanisms triggered by the illumina-
tion of the iron MOFs, Fenton-like functions of iron-based materials can generate additional
radical species via metal-redox-related pathways. For instance, the ROS generated via
photocatalysis can activate the Fenton catalysis as well.
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Among the Fe(III)-based MOFs studied for the photoreduction of Cr(VI), MIL-88B,
MIL-53, MIL-101, and MIL-68 (build up from the1,4-benzenedicarboxylic acid (BDC))
and MIL-100 (assembled from trimethyl 1,3,5-benzenetricarboxylate (BTC)) are the most
applied ones. Although they share common or very similar building blocks, their crystal
structures differ significantly in terms of surface area, connectivity of the iron-oxo units,
and connectivity of the pore space. For instance, MIL-53 and MIL-68 structures exhibit
inorganic chains of corner-shared iron-oxo units with an octahedral environment that are
connected through the BDC organic linkers to form a three-dimensional structure with
one-dimensional pores (Figure 10).

In comparison, the crystal structures of MIL-100 and MIL-88 compounds are built up
from the archetypal trimeric Fe-units, which are connected in a three-dimensional frame-
work via the BTC and BDC organic linkers (Figure 9). For more detailed information of the
topology, porosity, and properties of these materials, readers may consult reference [156].
In comparison, the crystal structure of Fe-MIL-53 is constructed from one-dimensional
Fe-oxo inorganic chains. These 1D interconnected paths within MIL-53 make it a better
photoconductor in comparison to MIL-100 and MIL-88. In addition, MIL-53 shows excellent
performance at slightly acidic (pH 4) to highly acidic conditions (pH 1), it is functional
under visible-light illumination, and its reusability gives rise to a negligible loss of its
efficiency (Table 2). Among the underlying mechanisms that can explain this performance,
the direct excitation of iron-oxo cluster is one of the most interesting proposals, as reported
by Laurier et al. [246]. Thus, the iron-oxo chains in MIL-53 adsorb incident photons under
visible-light irradiation, and the photogenerated charge carriers migrate to the surface of
the MOF particles participating in the redox reaction. Afterwards, the reduction of Cr(VI)
to Cr(III) absorbed on the surface is driven by the photogenerated electrons (ECB = −0.40V
vs. NHE at pH 6.8 and ECr(VI)/Cr(III) = + 0.51V vs. NHE, pH 6.8). Fenton mechanisms can
also play an important role by directly generating (i) electrons able to potentiate the Cr(VI)
photoreduction, and (ii) reactive oxygen species able to activate the iron sites to induce
a Fenton parallel reaction [247]. In particular, the good functionality of Fe-MIL-68 under
neutral to slightly acidic conditions (pH = 7–5), or its outstanding performance under acidic
environments <5, further evidences the versatility of Fe-MOFs to function under varied
environmental conditions (Table 2).

There is plenty of room for innovation in terms of organic linkers’ functionalization in
Fe-MOFs applied for chromium photoreduction. To date, most of the chemical encodings
are limited to the incorporation of amino groups to the organic linkers, as are the cases of
MIL-53-NH2, MIL-88B-NH2, and MIL101-NH2 materials (Table 2).

Fe-MOFs, in comparison to their non-functionalized variants, is attributed to the dual
excitation pathways achieved through (i) the photoinduced exciting of amine functionality
followed by the electron transfer to the Fe3-µ3-oxo clusters and (ii) the direct excitation of
Fe3-µ3-oxo clusters (Table 2). Just as an illustrating example, MIL-88B fails to complete the
Cr(VI) reduction under visible-light irradiation (i.e., 20%) while MIL-88B-NH2 reaches the
complete Cr(VI) to Cr(III) photoreduction under the same conditions. In fact, MIL-88B-NH2
outperforms the efficiency for the photocatalytic reduction of Cr(VI) under visible-light
illumination of other amino-functionalized MOFs (e.g., (Zr)UiO-66-NH2 and (Ti)MIL-125-
NH2), commercial inorganic and organic photocatalysts (N-doped TiO2, g-C3N4), and
even of the benchmark P25-TiO2 photocatalyst when irradiated under UV–visible light
(Figure 11).

Fe-MOF hybrid photocatalysts have also been combined with carbon (rGO), g-C3N4,
metal oxides (H3PMo12O40 (HPMo)), [9] WO3, TiO2, Bi12O17Cl2, and metal-halide and
noble-metal nanoparticles (carbon quantum dots (CQDs)/Au, Ag, Pd, Pd, Pt, Au, and
Ag—Table 2) to engineer advanced heterojunctions. The complexity of the heterojunc-
tions has been steadily increased by (i) incorporating carbon/metal or metal halite/metal
nanoantenna at the surface of the MOF particles, or by (ii) a direct physical mixture of
MOFs and TiO2, metal/halides, and WO3 semiconductors or PANI polymeric conductors
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(Table 2). In parallel, (iii) the encapsulation of polyoxometalate species within the pore
space of the MOF has been explored as well [248].
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Figure 11. (a) Photocatalytic reduction of Cr(VI) over various Fe(III), Zr(IV), and Ti(IV)-MOF-based
photocatalysts; (b) Photoreduction performance of NH2–MIL-88B (Fe) for four consecutive reactiva-
tion and utilization cycles. Reproduced with permission from reference [161].

The construction of advanced heterojunctions based on carbon-based 2D materials has
been explored with MIL-53 and MIL-101 materials. The doping degree of RGO or g-C3N4
is a key parameter to control in order to enhance the light-harvesting and photocatalytic
efficiency of MIL-53, since surpassing a given threshold, the activity of these heterostructure
materials starts to decline. MIL-101 has been modified with carboxylated g-C3N4 to improve
the interfacial bonding of heterojunctions, reaching moderate chromium photoreduction
efficiency in a third of the time compared to non-carboxylated systems.

In general, the heterostructure MOF-metal oxide photocatalysts exhibit better perfor-
mance than carbon-based homologue materials. This is the case of MIL-53/WO3, MIL-
100/HPMo, and MIL-100/WO3 materials, whose heterojunctions exhibit a better interplay
to couple the photocatalytic degradation and adsorption functions (Table 2). It has been
observed that the best catalytic performance of metal-oxide/MOF heterostructures is ob-
tained at pH < pHpzc. The stability, the potential reusability, and the negligible effect of
organic interferents for Fe-MOF/WO3 have been duly confirmed as well. For example,
MIL-100/WO3 (80 wt.–120 wt.%) displayed outstanding stability and reusability during
five successive cycling experiments on Cr(VI) photoreduction in synthetic water at pH 2
and enhanced Cr(VI) removal efficiency in the presence of low-weight organic molecules. It
is important to mention that the same photocatalyst is partially inhibited with the presence
of inorganic competing ions such as NO3

−, Cl−, and SO4
2−.

An alternative way to achieve Cr(VI) photoreduction in neutral-pH conditions has
been reported by the modification of MIL-88B with TiO2 (i.e., 98.6% at pH 7 after 35 min of
irradiation with visible light) (Table 2). In contrast, the modification of MIL-53 and MIL-100
with Bi12O17Cl2 improved the catalytic response under acidic-pH conditions for composites
with a weight ratio (1:1) (Fe-MOF: Bi12O17Cl2). The weight ratio of MOF/metal oxides plays
an important role in the modulation of the photocatalytic performance and tuning of the
heterojunctions’ efficiencies, even if those are obtained from a physical mixture of the two
components of the system (Table 2). The encapsulation of metal nanoparticles, or the direct
crystallization of the metal nanoparticles at the surface of the MOF nanoparticles, offers
an alternative approach to engineer advanced heterojunctions. This strategy also endows
hetero-photocatalysts of hot-spots arising from the plasmonic functions of noble-metal
nanosystems. That is, surface plasmons open the perspective to generating localized-heat
points and active catalytic sites able to potentiate the photocatalysis in a synergic manner.
For instance, the complete reduction of Cr(VI) under visible irradiation was achieved in
short reaction times when combining MIL-100 with gold, palladium, or platinum metal
nanoparticles (Table 2). Similarly, the Cr-MIL-101 photocatalytic efficiency for reducing
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Cr(VI) under visible-light illumination conditions has been improved by anchoring Pt, Pd,
and Cu nanoparticles on its surface.

However, as is well known in metal-based catalysts applied for petrochemical ap-
plications, the agglomeration of the metal nanoparticles, or their size, induces a decay in
the Cr(VI) photoreduction performance of these composite catalysts. Organic conductors
as PANI polymers have also been mechanically integrated with MOF nanoparticles (i.e.,
MIL-100). The benefits arising from the combination of metal or organic-based electronic
conductors into the framework of ordered porous materials have been duly demonstrated
during the last decade. Nevertheless, it is important to note that we are far from fully
understanding the underpinning mechanisms at the interphase/heterojunction between
these two types of materials.

Overall, considering the state-of-the-art of Fe-MOFs for chromium photoreduction, the
key parameters that potentiate their performance are: (i) acidic working conditions (i.e., pH
< 4), (ii) the presence of hole-trapping agents (i.e., oxalic acid), (iii) amine functionalization
of the frameworks, and (iv) the concentration and size of the metal oxide, metal, or carbon
nanomaterials integrated within the MOFs to engineer their photo-response. Recent studies
point out the benefits of integrating MOF materials in sand [239] and alumina (Table 2).
Multivariate chemistry is and will be an active research area to boost the photoreduction
efficiency of the MOFs over Cr(VI), as explained in the next section of this work (Table 2). An
illustrative example is the bimetallic Fe/In MOF (MIL-68-NH2 (InαFe1-α)). The efficiency
of these photocatalysts is highly dependent on the Fe(III)/In(III) content. For an α of
0.8, the reduction efficiency was lower even than the initial In-MOF, while an optimum
balance between the cations, i.e., MIL-68-NH2 (In0.4Fe0.6), gave rise to 3.6 times faster
photo-reduction than for MIL-68-NH2 (In) (Table 2).

3.3. Tetravalent-Metal-Based Metal-Organic Framework Photocatalysts

Tetravalent-based MOFs stand out in terms of chemical and hydrolytic stability in
comparison with most of the trivalent- and divalent-metal-based homologues. Gener-
ally speaking, these background characteristics arise from the high connectivity of their
archetypal inorganic building blocks: the poly-nuclear zirconium and titanium oxo-hydroxy
clusters and chain-like subunit. Since the discovery of the archetypal UiO-66 and MIL-
125 zirconium and titanium, their tailor function pre- and post-synthetic encoding has
exponentially increased (Figure 12).

Surprisingly, the application of tetravalent MOFs for chromium photoreduction pur-
poses has been limited to the benchmark UiO-66 and MIL-125 materials, and of their
modifications. There is room for exploration in this specific research subject, since the
structural and chemical versatility of tetravalent-based MOFs could open the perspective
to understanding the effect of many key features of these materials (i.e., surface area, pore
space, presence of defects, connectivity of the inorganic units, post-synthetic functionaliza-
tion of the pore space, multivariate chemistry . . . ) into their photocatalytic performance.
For instance, for readers that could be interested in gaining a deeper understanding of
the structural and chemical versatility of tetravalent-based MOFs, they may consult refer-
ences [184–189].

Regarding the UiO-66 and MIL-125 materials employed for Cr(VI) photoreduction,
they share a common topology arising from the similar connectivity of their inorganic and
organic building units (Figure 12). Both compounds share the terephthalic-like linkers as
their organic building blocks, and slightly differ in the characteristics of their inorganic
building blocks. UiO-66 is built of hexanuclear [Zr6(µ3-O)4(µ3-OH)4]12+ clusters. The
zirconium oxide nodes of UiO-66 can connect up to 12 carboxylate groups belonging to
BDC linkers. Half of the eight oxygen atoms in the hydroxylated version of this SBU are
bound to three zirconium atoms as individual atoms, and the remaining oxygen atoms are
bound to three zirconium atoms in hydroxide form (Figure 12a).
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similar tetrahedral and octahedral cages and surface areas have been reported for this 
compound as well. The main difference lies on the inorganic nodes of the crystal structure. 
Titanium oxo-clusters in MIL-125 consist of a ring structure of eight-edge-shared Ti-octa-
hedra capped by twelve carboxylate groups belonging to the BDC organic linkers. Over-
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Figure 12. Inorganic structural units found in tetravalent zirconium MOFs used for metal ion recovery
in aqueous media. (a) Zr6O4(OH)4(CO2)12, (b) defective Zr6O4(OH)4(CO2)12, and (c) functionalized
Zr6O4(OH)4(R1-CO2)12-X(R2-CO2)X hexanuclear clusters. (d) Zr one-dimensional units found in
MIL-140 structure. Crystal structures of the zirconium MOFs used for metal ion adsorption, (e)
UiO-66, (f) MOF-808, (g) DUT-67, (h) MOF-545.

UiO-66 crystallizes as a face-centered-cubic structure of F m−3m symmetry with a
lattice parameter of 20.7 Å. The structure contains two types of cages: tetrahedron and
octahedron pores of 7.5 Å and 12 Å, respectively. Ti-MIL-125 shares the same topology and
connectivity of their inorganic and organic building units with UiO-66. Therefore, similar
tetrahedral and octahedral cages and surface areas have been reported for this compound as
well. The main difference lies on the inorganic nodes of the crystal structure. Titanium oxo-
clusters in MIL-125 consist of a ring structure of eight-edge-shared Ti-octahedra capped by
twelve carboxylate groups belonging to the BDC organic linkers. Overall, the connectivity
of the Ti-oxo clusters (12-c) and the organic linkers (2-c) gives rise to an fcu topology with
a slightly distorted tetragonal symmetry in comparison to the one of UiO-66. Readers
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may consult the recent review of Y. Bai et al. [249], L. Feng et al. [250], and Y. Chen
et al. [251] for the crystal structure, defective chemistry, chemical and thermal stability, and
potential applications of the UiO-66 family. Similarly, the investigation on MIL-125 has
been intense since its discovery by Ferey’s lab that wrote specific reviews of titanium-based
MOFs [252–254].

Taking into account the chemical stability of tetravalent metal-based MOFs, they
have been started to be employed as photocatalysts for chromium photoreduction, as
summarized in Table 3.

Table 3. Tetravalent-metal-based MOF photocatalysts for Cr(VI) to Cr(III) reduction.

Metal MOFs pH Illumination
Source

[Cr (VI)]0
(ppms)

Photocatalyst
Loading

(g/L)

Photo-Oxidation
Efficiency

Ref.Removal
Percentage (%)

Time
(min)

Zr

UIO-66-NH2 2 Vis. 10 0.5 97 80 [173]
UiO-66

2 UV/Vis. 10 0.5

35 170

[255]
UiO-66-NH2 100 100
UiO-66-NO2 12 170

UiO-66-Br 22 170

UiO-66-NH2/rGO 2 Visible 10 0.5 100 100 [256]

UiO-66/g-C3N4 2 Visible 10 0.5 99 40 [257]

UiO-66(OH)2/H2BDC-(OH)2
20% 2 UV-LED 10 0.4 100 40 [258]

UiO-66-NH2-100/PTCDA-10 2 LED-Visible 10 0.375 100 100 [259]

UiO-66/BiOBr/Cotton fibers 2.5 Visible 5 2 99 80 [260]

UiO-66-NH2−def 2 Visible 5 0.35 100 100 [46]

UiO-66-NH2/Zr/Hf/
-Al2O3 membrane 2 Visible 5 - 98 120 [261]

Ti

MIL-125/NH2 2.1 80 60 [222]
MIL-125/MoS2

6 Visible 48 0.4

20

70 [242]MIL-125/Ag2S 38
MIL-125/CdS 40
MIL-125/CuS 60

MIL-125-NH2/NTU-9
3

Visible 10 1
100

90 [213]5 70
8 80

TiO2/MIL-125/core shell 2 Visible 5 0.3 100 60 [243]

NH2-MIL-125/BiOI 2 Visible 40 1 100 120 [211]

Regarding the application of UiO-66 for photocatalysis, most of the investigations have
been focused on its chemical modification to prevent the recombination of electron–hole
pairs and shift the photo-absorption edge from UV (3–5% of total sunlight) to the visible-
light region. By applying a similar strategy reported for divalent and trivalent based-MOFs,
Shen et al. (2013) [173] improved the Cr(VI) to Cr(III) photoreduction efficiency of UiO-66
by encoding amino groups into its framework (i.e., UiO-66-NH2). Due to the typical yellow
color of the amino-terephthalic acid, and of the UiO-66-NH2 sample, the band gap energy
was shifted to the visible-light region, unlocking the capacity of the material to drive the
hexavalent chromium photoreduction under sunlight illumination. Extending this initial
study, the same authors (Shen et al.) explored the light-harvesting and photocatalytic
activity of UiO-66-NO2 and UiO-66-Br variants (Table 3).

The photoactivity of the UiO-66 frameworks was clearly related to their band gap
energy, the amine variant being the one with the lower band gap energy and the most
efficient one to photo-reduce chromium hexavalent species under visible-light illumination.
Nevertheless, the correlation between the structure and the photoactivity of the UiO-66
frameworks was unclear. The metal substitution at the zirconium hexanuclear units of
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the UiO-66-NH2 framework has also been explored, both by post-synthetically doping
the linker-defective positions of the structure with titanium ions [262]. It is interesting to
note that for Ti/Zr-UiO-66, the improvement in the hexavalent chromium photoreduction
does not arise from an energy band gap modification, since both Zr and Zr/Ti compounds
exhibit similar light-harvesting characteristics, but from the improved photoconduction
(i.e., reduced electron–hole recombination) of the Zr/Ti variant. Recently, UiO-66-(OH)2 has
been revealed as the most efficient variant within the UiO-66 family to photo-reduce Cr(VI)
to Cr(III). Its low band gap energy, together with its fast and efficient photoconductions,
has given rise to a 100% conversion in less than 40 min under UV-Vis light illumination. It
is important to note at this point that the hydroxyl variant of the UiO-66 framework shows
an intermediate hydrolytic stability, so although the reusability tests indicate a negligible
loss of activity, it would be key to assess to what extent the materials are releasing some of
their inorganic or organic components to the media.

In comparison to UiO-66, the conduction band (CB) potential of the titanium-oxo
cluster in MIL-125 is more positive than the ones reported for the zirconium hexanuclear
clusters. This feature induces an efficient electron transfer from the photoexcited organic
linker to the titanium-oxo cluster (Table 3). The main drawback of MIL-125 is its wide
band gap, limiting its light absorption only to the UV region. Amine functionalization
of the MIL-125 photocatalysts has been the first approach to shift its band gap to the
visible-light region, arising from the electron donation of the N2p to the aromatic ring of
the amino-terephthalate linker. In addition, the amino groups within MIL-125-NH2 act as
a photosensitizer, improving the photocatalytic behavior in the reduction from Cr(VI) to
Cr(III). It is well known that the electron transfer from the linkers to the Ti-oxo clusters
generated Ti3+-Ti4+ pairs that play an additional role in transferring the electrons to the
hexavalent chromium, or in generating radical oxidative or reductive species at the surface
of the MIL-125 particles (Table 3).

Although the photocatalytic efficiency of MOFs has been widely proved, and the
strategies to enhance their performance duly identified, until recently, their potential to
work as dual sorbents/photocatalysts for the photoreduction and capture of Cr(VI) and
Cr(III) has been widely overlocked. The first investigation in this regard was reported by
P.G.-Saiz and coworkers for Ti and Zr benchmark UiO-66 and MIL-125 materials [46]. In
order to elucidate the fate of Cr(III) ions during the photo-transformation of Cr(VI), the
authors monitored both the Cr(VI) and Cr(III) concentration in the water solution during
the Cr(VI) adsorption in dark conditions, and after triggering the photocatalysis through
UV-Vis illumination.

Their findings demonstrate that even though MIL-125 was the best photocatalyst in
terms of Cr(VI) reduction rate, the material was not able to fully retain the Cr(III) photo-
transformed species. In contrast, the UiO-66-NH2 variant showed a full retention of the
Cr(III) ions during photocatalysis, although the kinetics were slightly slower than those of
MIL-125 (Figure 13).

It is interesting to highlight at this point a previous study of the same authors where
they assessed the adsorption capacity of UiO-66 amine and hydroxyl variants for Cr(VI)
and Cr(III) adsorption [135]. In this work, they reported an experimental approach to
determine the Cr(VI), Cr(V) and Cr(III) speciation within the MOFs after adsorption. This
approach can be easily adapted in the future to study the chromium speciation evolution
during photocatalysis as well (Figure 14).
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Figure 13. (a,b) Adsorption and photocatalytic reduction of Cr(VI) in the different MOF samples
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the photoreduction kinetics. (d) Summary of Cr(VI) adsorbed at the MOF at dark conditions, the
total amount of Cr(VI) photoreduced to Cr(III), the amount of photoreduced Cr(III) adsorbed at
the MOF, and the photoreduction rate of the studied materials. Reproduced with permission from
reference [64].
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The engineering of advanced heterojunctions has been also applied for zirconium and
titanium MOFs. Shen et al. [28] induced an electrostatic self-assembly of UiO-66-NH2 and
GO, and posteriorly, reduced GO to rGO via hydrothermal treatment. The heterostructured
UiO-66-NH2/rGO improves the visible-light absorption and the efficiency to separate
the photo-generated electron–hole pairs, due to the electron conductivity of graphene
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functionalities. Overall, UiO-66-NH2/rGO exhibits significantly improved photocatalytic
activity under visible-light illumination in comparison to UiO-66-NH2.

Similarly, UiO-66/C3N4 composites showed a limited recombination of photo-induced
charge carriers due to the enhanced mobility of photogenerated electrons induced by g-
C3N4 sheets (Table 3).

In comparison to its zirconium counterpart, the heterostructured photocatalysts con-
structed from MIL-125 materials have been mainly based on metal oxide or metal sul-
phide nanoparticles. The formation of a heterojunction system consisting of narrow-gap
semiconductors, such as MoS2, Ag2S, CdS, and CuS on MIL-125, shifts the absorption
of the heterostructured materials to the visible region (Table 3). In this case, metal sul-
phide nanoparticles also have a similar sensitizer effect to that NH2 encoding into the
framework [263,264]. Additionally, E. Dhivya et al. (Table 3) reported the synthesis of a
heterostructure system involving two Ti-based MOFs (NH2-MIL-125 and NTU-9 (Ti)) for
increasing the charge separation. In this case, the 1,4-dioxido-2,5-benzenedicarboxylate
organic linkers of NTU-9 expand even more the light-harvesting capacity of the system to
the visible-light region (i.e., 2.54 eV and 1.29 eV band gaps). The combined system exhibits
the highest photocatalytic performance in Cr(VI) reduction due to the efficient transfer of
the photogenerated electrons on the charge band of NTU-9 to the empty valence band of
MIL-125-NH2.

4. Multivariate Metal-Organic Frameworks for Chromium Photoreduction

Multivariate reticular chemistry offers an opportunity to tailor and balance the light
harvesting, photoconduction capacity, and oxygen radicals generation to achieve a fast and
efficient chromium photoreduction. The variance of the different functional groups encoded
within the ordered pore space of MOFs opens the avenue to obtain synergistic effects. For
instance, multivariate MOFs (MTV-MOFs) possess more than two functionalities randomly
distributed within the framework that work together in a cooperative or coupled fashion,
outperforming—as an ensemble—their homogenous and periodic counterparts [264–266].

MTV-MOFs must not be mixed up with multicomponent MOFs, where the multiple
linkers are topologically different from one another in terms of length and connectivity,
and thus, can be distinguished individually in a crystalline lattice. Indeed, the fundamen-
tal criteria of MTV-MOFs are specific functionalities occupying a similar location in the
framework and a changeable percentage of each functionality. This way, the introduction
of varied functional groups can be achieved without altering the underlying backbone of
their structure, obtaining a “heterogeneity within the order”.

MTV-MOFs are classified as mixed-ligand (ML) and mixed-metal (MM) MOFs. Just
as an illustrative example of the versatility of MTV materials, in 2010, O. M. Yaghi et al.
reported the first ML-MTV-MOF, incorporating a terephthalate linker and its eight deriva-
tives within one pure phase of a MOF-5 compound [267]. Since then, the application of
MTV-MOFs has been expanded to many research areas, including Cr(VI) photoreduction.
It is important to mention at this point that X. S. Wang et al. [268]. Have recently reviewed
the application of MTV-MOF materials for chromium photoreduction purposes. Below,
we have tried to highlight these works focused on MTV-MOF reticular materials that have
been published after the seminar compilation developed by the abovementioned authors.

Recently, Valverde et al. [136] designed a multivariate UiO-66 to develop dual sorbent
photocatalysis for the removal of Cr(VI) in wastewater. Many studies have explored how
replacing the original terephthalate (TPA) linker of the UiO-66 framework for some of its
derivatives can endow the material with chemical (i.e., dihydroxyterephtalate (TPA-(OH)2))
and photocatalytic (i.e., aminoterephtalate (TPA-NH2)) capacity to reduce Cr(VI) to Cr(III),
as with the chemical affinity to adsorb both Cr(VI) (i.e., TPA-NH2) and Cr(III) (i.e., TPA-
(OH)2). However, both UiO-66-NH2 and UiO-66-(OH)2 lack the chemical robustness to
work under highly acidic or caustic conditions that only the nitro-functionalized UiO-66-
NO2 can tolerate (Figure 15). Multivariate reticular chemistry offers an opportunity to tailor
and balance all the targeted characteristics to achieve a fast and efficient Cr(VI) to Cr(III)



Nanomaterials 2022, 12, 4263 30 of 48

photoreduction via the synergistic combination of different functional groups. In this study,
Valverde et al. employed multivariate functionalization strategy to tune multiple chemical
characteristics of the UiO-66 structure, such as the light harvesting, the adsorption capacity
over Cr(VI) and Cr(III) species, photoconduction efficiency, and Cr(VI) to Cr(III) chemical
reduction and photoreduction properties (Figure 15).
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In parallel, they explored how the compositional variance in MTV-MOFs affects
their hydrolytic stability in comparison to the one of their parent single-functionalized
frameworks. From the overall performance to photo-reduce and capture chromium ions,
the balanced multivariate functionalization of the UiO-66-NH2/-(OH)2/-NO2 framework
resulted in a dual sorbent/photocatalyst with: (i) efficient chemical/photo-reduction of
Cr(VI) to Cr(III) and (ii) retention through adsorption of the resulting Cr(III) ions.

Regarding the mechanisms for the chemical and photocatalytic transformation and
immobilization of chromium in the UiO-66 MTV-MOFs, it is important to note that the
modification of the chromium oxidation state is linked to variation in its coordination
environment. Overall, Cr(VI), stabilized as CrO4

2− chromate anions, gains three electrons
and incorporates two hydroxyl or water molecules within its coordination environment
during its reduction to Cr(III). During this process, the highly reactive and transient inter-
mediate Cr(V) species are formed as well, as A. Valverde et al. [136] proved through EPR.
The authors stated that the first step of the immobilization and transformation of Cr(VI) to
Cr(III) into the UiO-66 frameworks is the adsorption of chromate anions (Figure 16a,b). Two
possible mechanisms explain the chromate adsorption capacity of the UiO-66 frameworks,
their covalent immobilization to the linker-defective positions located at the zirconium
hexanuclear clusters, or their electrostatic interaction with hydroxyl, but especially, with
amine-protonated groups. Reached at this point, two possible paths for the Cr(VI) to Cr(III)
reduction are possible: (i) photocatalysis and (ii) chemical reduction. The chemical encod-
ing of the UiO-66 frameworks determines the efficiency and combination of the separated
paths.
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During photocatalysis, the light-harvesting capacity of the UiO-66 frameworks (i.e.,
band gap) promotes the electron and hole separation. Nevertheless, the conduction and
transfer of electron/hole pairs are governed by the photoconduction efficiency of the
materials (Figure 16(c.1)). At this point, the chemical variance of MTV materials makes
the difference. In fact, they realized that the incorporation of an electron donor and
withdrawing groups within the same framework improves the photoconduction and
fastens the Cr(VI) to Cr(III) photo-transformation. The chromate anions stabilized within
the porous scaffold are steadily reduced to CrV and Cr(III) while they are immobilized
into their adsorption position (Figure 16(c.2)). As the photocatalytic transformation of
Cr(VI) to Cr(III) evolves, the photoreduction process is repeated, leading to the clustering
of Cr(III) ions within the framework (Figure 16(c.3)). It is important to note that if the
single or MTV-UiO-66 lacks hydroxyl groups, transient Cr(V) species will be stabilized
within the material after operation. In contrast, when hydroxyl functionalities are encoded
in UiO-66, the Cr(VI) adsorption process (Figure 16(b,d.1)) is coupled to its chemical
reduction to Cr(III) via electron-rich quinone groups coming from hydroxyl functionalities
(Figure 16(d.2)). Finally, they stated that as the chemical reduction, or its combination with
photocatalysis, evolves, chromium ions are stabilized as clustered Cr(III) ions with the
frameworks (Figure 16(d.3)). Regardless of whether photocatalysis, chemical reduction
or their combination is the process that triggers the Cr(VI) transformation to Cr(III), the
presence of hydroxyl ions is key to destabilizing Cr(V) transient species and transforming
them into Cr(III) ions. This does not preclude the presence of Cr(VI) and Cr(III)ions within
hydroxyl-functionalized frameworks, but the absence of highly reactive and toxic Cr(V).

MM-MTV-MOFs are complex to synthetize. For these materials, different metals are
mixed in the inorganic secondary building units (SBU). However, this often results in the
synthesis of mixed MOF phases, rather than a single MM-MTV-MOF. This issue can be
overcome by choosing metals with similar valences and making sure that they can form the
same SBU. Another strategy to overcome this issue is the transmetalation of the material.
With this post-synthetic modification, heterometallic MM-MOFs can be obtained, which
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cannot be achieved through normal synthesis because of the different reactivity of the metal
ions [269,270]. MM-MTV-MOFs are highly promising as photocatalysts, since they offer
two metal reaction centers in apparent proximity to the distinct photocatalytic performance.
Even if they have not been studied yet for Cr(VI) photoreduction, they have been shown to
enhance the photocatalytic activity to reduce CO2. Indeed, the presence of a second metal
as an electron mediator in these materials promotes EHP transference from the excited state
of the linker to metal ion clusters [271]. Sun et al. [272] introduced Ti via post-synthetic
metal exchange in (Zr) UiO-66-NH2, and their material showed enhanced photocatalytic
performance for both CO2 reduction and hydrogen evolution under visible light.

MM-MOFs and ML-MOFs can also be merged in a single material. For instance,
Navarro Amador et al. [273] obtained a material based on (Zr) UiO-67 with mixed ligands
and mixed metals. The synthesis of the material was made through the combination of
two synthetic pathways: first, the solvothermal synthesis with two different linkers (the
original linker biphenyl-4,4′-dicarboxylic acid, and a similar one modified with Ru to be
used as light antenna). Afterwards, Ti was included via post-synthetic metal exchange
on the coordination node of UiO-67, and a material able to remove organic pollutants
from an aqueous solution and to catalyze the degradation of the pollutant under visible-
light irradiation was obtained. Concretely, the material showed to be active towards the
degradation of methylene blue with a good improvement due to the modifications on the
structure even when the exchange was not complete, proving the interaction between the
light antenna and the catalytic center, since the materials with just one of the mentioned
modifications did not show a big improvement in the catalytic activity. These studies show
the promising materials that can be obtained via the multivariate strategy, and that could
be extended to Cr(VI) photoreduction soon.

5. Future Perspectives of MOFs for Chromium Photoreduction

We wish to place the research of MOFs for Cr(VI) photoreduction into perspective with
the forefront advances in (1) reticular chemistry, (2) materials for catalysis and photocataly-
sis in environmental remediation [274–276], and (3) their hybridization/integration into
heterostructured systems with improved photochemical properties [277–280]. In parallel
to the fundamental perspective, it is of paramount importance to keep the application
perspective of the commercialization of MOFs for photocatalysis in real scenarios firmly in
mind (Figure 17) [281,282].
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First, we wish to highlight that there is still plenty of room for innovations for MOF
material design in order to optimize chromium detoxification. From the vast MOF com-
pounds available to date, only few with similar inorganic and organic building blocks have
been tested for Cr(VI) detoxification purposes [283]. The scope of MOFs built up or func-
tionalized with chromophore-like organic linkers [284,285] or metal linkers [286] tested for
chromium photoreduction are highly scarce in comparison to the current scope of possibili-
ties. Many of these have been specifically designed for reductive catalysis or photocatalysis
purposes far from chromium reduction, such as carbon dioxide transformation [287,288] or
water-splitting purposes [289]. Defect engineering or post-synthesis are mostly unexplored
strategies so far for MOF material design for chromium detoxification [290–292]. From
the varied strategies proposed to install metal-catalytic and photocatalytic sites into MOFs
after their synthesis (i.e., chemical vapor deposition [293], metal adsorption [294], and
transmetalation), just the most conventional ones have been explored so far. A similar
scenario is found when multivariate or multicomponent reticular materials are consid-
ered [295,296]. Mixed-metals/linker or multicomponent MOFs could make the difference
in terms of light harvesting, exciton generation, and hole and electron separation and
transport. For instance, the compositional and structural variances within MTV-MOFs have
already led to synergistic functions outperforming the efficiency of singly functionalized
MOF variants for gas adsorption, [297] drug release, and even for photocatalysis purposes,
including a few works which have been published exploring their potentials for chromium
photoreduction.

Similarly, the hybridization/integration of MOFs into heterostructured systems ap-
plied for Cr(VI) photoreduction is still in its infancy, since from the multiple options
(Figure 4), only three have been explored deeply (i.e., surface decoration and core–shell
structures). The complexity of the heterostructured materials based on MOFs designed
for photocatalytic applications in general far exceeds the ones developed for chromium
photoreduction. In addition, the integration (i.e., structure and interphase between the
different materials conforming to the heterostructure) is key to modulate the photochemical
response of the hybrid heterojunction. For instance, physical or chemical in situ growth, or
an interphase specifically designed to facilitate a smooth transition between the materials
forming the nanostructure, is key to modulating the overall photochemical properties
(among other ones) of the system. This point has been carefully studied when integrating
the MOFs as surface thin films for gas membrane separation, or is in place to integrate the
MOF properly in electronic devices or signal-transducer materials [298–300]. For instance,
self-assembly [301,302], printing [303], deposition and patterning of MOFs [304] can play a
key role to endow them with photonic properties to adsorb specific wavelengths [305–311].
In addition, the heterojunctions at this thin-film scale have been revealed to be beneficial
for photocatalytic purposes as well.

As mentioned before, these advances in fundamental MOF design and integration
levels need to be contextualized considering their final environmental applicability. In
contrast to catalysts for petrochemical or fine-chemical purposes, the following has to be
considered for a material used in environmental remediation: (1) the chemical stability, (2)
eco-toxicology, (3) reusability, and (4) production costs and large-scale synthesis feasibility.

Regarding the chemical stability, there is still room for improvement to evaluate these
parameters. Current research works fail to fully evaluate the hydrolytic and chemical
stability of MOFs, since most of them do not quantify or estimate the leakage of the MOF
components (metals, organic linker, or functional group molecules incorporated to the
framework) during operation. For instance, the long-term hydrolytic stability of most of
the MOFs explored for chromium photoreduction is questionable, especially in the case of
divalent-metal-based carboxylate frameworks [312–314].

From an eco-toxicological perspective, this issue could be partially solved if non-
ecotoxic components were used to build up the MOF photocatalysts [315]. For example,
iron, titanium, and zirconium (to a lesser extent) and fumaric acid, aspartic acid, or tartaric
acid could be very interesting building blocks to find a MOF solution with negligible envi-
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ronmental effects if any leaching occurs during operation. Iron-based MOFs are especially
appealing in this regard, since besides being built up from an environmentally friendly,
cheap, and abundant metal, high-yield water green synthesis routes have been developed
during the last decade to obtain them at large scales. If assembled from environmentally
friendly linkers such as fumaric acid (i.e., MIL-88, MIL-101 . . . ), the ecotoxicological impact
of Fe-MOFs could be greatly reduced even if the materials are not as hydrolytically stable
as their chromium or zirconium homologues. Nevertheless, it is important to note that the
ecotoxicology of the MOF materials themselves needs to be evaluated as well to discard
any negative environmental impact if MOF particles are leached.

It is difficult to evaluate and balance by conventional means the structural, porous,
stability, performance and ecotoxicity features that are needed to achieve a MOF system
to be applied for chromium photoreduction in real application conditions. Here is where
machine learning could play a disruptive role during the coming years in order to identify,
screen, classify, and correlate MOFs’ potentials on the basis of geometric, chemical, topo-
logical, energetic, and performance-based descriptors [316,317]. In fact, machine learning
is already having a deep impact on unraveling synthesis paths and engineering strategies
of MOFs for gas adsorption and separation purposes [318–321]. As far as the investigations
of MOFs for photo-oxidative and photoreductive processes expand, it is more likely that
machine learning could be applied to unravel the underpinning chemical–physical features
that make the MOFs feasible for this application.

The integration, recovery, and reactivation of MOF catalysts within applicable pho-
tocatalytic systems are the main objectives. The immobilization of the MOF powdered
materials on sand or alumina could help to scale up the MOF application for water remedi-
ation, especially in terms of the hydraulic conductivity of the final system. An economical
and easily accessible strategy could be the integration or immobilization of MOF sor-
bent/photocatalysts into metal oxide, ceramic, or polymeric membranes and filters. In
addition to the possible synergic effects to combine two semiconductor materials in a
final device form, once supported/integrated on different substrates, the time and energy
consumption for the recovery and reactivation of the MOF would be significantly reduced.
These MOF/integration strategies need to consider as well the MOF shaping and filming
technologies that have been developed during the last decade [322]. The hybridization
of MOFs with polymers has been a natural research step that has been applied for the
heavy-metal detoxification of water, but that has been rarely tested for chromium adsorp-
tion and or photoreduction purposes [323–325]. Similarly, the growth of MOFs as surface
porous continuous layers onto varied supports has given rise to a portfolio of thin-film
porous materials with optical and transport properties far from those of the bulk materials.
Still, there is plenty of room to investigate in this regard when applying the MOFs for
chromium photoreduction purposes. In parallel, shaping the MOFs as pellets and foams
of 3D-printed objects with added meso-macroporosity features could close MOFs to real
technologies such as water detoxification without losing the intrinsic functionality of the
parent material [326–328].

Last but not least, up to now, most of the MOF materials are usually produced at
the laboratory scale, and their validations in the photoreduction of chromium have been
carried out in synthetic solutions. Thus, the feasibility of massively producing these ma-
terials using low-cost metal centers on a larger scale without affecting their properties
and the cost-effectiveness is necessary. An advantage of MOFs in comparison to alterna-
tive photocatalysts or adsorbents is that their feasibility to capture and degrade organic
pollutants—even persistent organic pollutants or chemicals included within the priority
watch list of the European commission such as drugs, hormones or pesticides—has been
corroborated at the lab scale [329–331]. Thus, the development of advanced, cheap and
environmentally friendly MOF photocatalysts does not only open the perspective to face
hexavalent chromium pollution, but alternative source of organic and inorganic hazardous
chemicals that are usually found in wastewater streams.
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In this sense, the evaluation of MOF technologies to face different types of pollution
sources in complex water matrices could make the difference compared to traditional
sorbent or photocatalyst materials. Overall, the drawback of the cost of producing MOF
materials could be mitigated if their feasibility to capture or degrade pollutants that tra-
ditional technologies fail to remove is proved both at the lab scale and at close-to-real
conditions. For instance, even if the costs arising from MOF production could prevent
their application in large-scale wastewater installations, they could be a technically and
economically feasible solution to develop portable water remediation systems applicable in
isolated areas.

All in all, reticular chemistry offers a plethora of opportunities to function-tailor MOF
materials for chromium water remediations, but also for photocatalytic and adsorption
purposes in general. Going from the lab bench to real-world applications, the strategies
designed at lab-scale to engineer and improve the performance of MOFs need to be balanced
with their cost of production and environmental impact in terms of their ecotoxicity or
the ecotoxicity of their components. The point that could make the difference with their
commercial counterparts could be the possibility to face the chromium photoreduction
concurrently with specific sources of pollution that traditional technologies fail to remediate.
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