

IR spectroscopy studies on Layered Double Hydroxides as possible electrocatalysts for CO₂ reduction reaction to CO

<u>Melodj Dosa</u>¹, Margherita Cavallo¹, Ryosuke Nakazato², Natale Gabriele Porcaro¹, Matteo Signorile¹, Silvia Bordiga¹, Nataly Carolina Rosero-Navaro², Kiyoharu Tadanaga², Valentina Crocellà¹, Francesca Bonino¹

¹Department of Chemistry, NIS and INSTM Reference Centers, Università di Torino, Via Quarello 15/A, 10135 Torino, Italy ²Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido, Japan

Contents

JNIVERSITÀ

2/18

Introduction

4AirCRAFT project and aim of the work

Materials and methods

Description of the methodologies used in this study

Results

2

3

4

Discussion about the results from characterization

Conclusions and future perspectives

6th September 2023

Introduction

6th September 2023

4AirCRAFT Project

UNIVERSITÀ DI TORINO 4/18

This work is part of the H2020 European Founding project "4AirCRAFT" Air Carbon Recycling for Aviation Fuel Technology (GA ID 101022633).

4AirCRAFT <u>combines</u> hybrid catalytic conversion and process intensification to bring out an <u>efficient</u>, precise, <u>flexible</u> and <u>scalable</u> unique technology to **direct convert recycled CO**₂ <u>into</u> <u>sustainable</u> and <u>clean</u> liquid fuels, thus making flying carbon neutral.

4AirCRAFT approach.

CDCF 2023

Melodj Dosa, PhD

Aim of the work

The **electrochemical CO₂ reduction reaction** (**CO2RR**) to CO is a promising strategy for the CO_2 conversion ¹⁻³.

Among the possible materials can be used for CO2RR, the **Layered Doubled Hydroxides** (**LDHs**) are good candidate since they have⁴:

- Strong affinity with CO₂ in water.
- High stability in basic electrolytes.
- High ion conductivity.
- High affordability of the components.

Scheme of LDH structure.

¹X. Duan et al., Adv. Mater., 29 (2017) 1701784.
²R. Nakazato et al. RSC Sustain. (2023), submitted.
³N. Yamaguchi at al. J. Asian Ceram. Soc. (2023), submitted.
⁴Y. Furukawa et al. Solid State Ionics., 192 (2011) 185–187.

6th September 2023

Materials and Methods

Synthesis procedure

• The **synthesis** were performed by Hokkaido University, according to the scheme reported.

6th September 2023

Three samples were studied:

- Zn-Al 1:2
- Zn-Al 1:1
- Zn-Al 2:1

Best electrocatalytic performance

Melodj Dosa, PhD

UNIVERSITÀ DI TORINO

7/18

Scheme of the experiment performed

6th September 2023

Set-up used for the FT-IR analysis.

Melodj Dosa, PhD

ATR cell

6th September 2023

FT-IR results

60

situ ATR-IR spectra In in the 4000-500 cm⁻¹ spectral region of samples

UNIVERSITÀ DI TORINO

10/18

- The contact with H_2O caused an increase in the high frequency region bands associated to the OH stretching.
- The interaction of CO_2 was responsible for the appearance of surface (non-structural) carbonates-like species.

Melodj Dosa, PhD

6th September 2023

30

Time (min)

RT

6th September 2023

Zn-AI1:1_H₂O+CO₂

Zn-AI1:1_H₂O+N₂

b

- A **deconvolution** of the main families of carbonates was performed keeping the position of the structural interlayer H_2O and CO_3^{2-} fixed.
- Different families of carbonates were evidenced

Zn-Al 1:2_H₂O+CO₂

Zn-Al 1:2_H_O+N_

Structural CO₃²⁻ Bidentate bridged CO₃²⁻

H_O

a

Zn-AI2:1_H₂O+CO₂

- Zn-AI2:1_H₂O+N₂

•

C

0

Monodentate

Bidentate Bridged

Zn-Al 1:2, compared to the other two samples, has higher of monodentate species with

UNIVERSITÀ DI TORINO

13/18

number carbonates respect to bidentate ones.

Bidentate Chelated

6th September 2023

Conclusions and future perspectives

• The in situ **ATR-IR** measurements highlighted that the **three LDH** samples formed **different families of carbonates**.

6th September 2023

UNIVERSITÀ DI TORINO

15/18

UNIVERSITÀ DI TORINO

Melodj Dosa, PhD

16/18

Conclusions and future perspectives

- The identification of the carbonate species was possible thanks to IR studies with cyclohexane (for sake of brevity the results are not reported).
- The samples are currently under investigation for electrocatalytic tests by Hokkaido University.

DESARROLLO DE LAS NUEVAS Tecnologías del hidrógen

Universiteit Antwerpen

北海道大学

4AirCRAFT

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101022633. This project is supported by Japan Science and Technology Agency (JST) (Grant Agreement No JPMJSC2102) and São Paulo Research Foundation (FAPESP) (Grant Agreement No 2022/04751-0).

& NANOSTRI ICTURES

UNIVERSITÀ DI TORINO ELSINGIN YLIOPIST

Melodj Dosa, PhD

Thank you for your kind attention

Any questions?

Melodj Dosa, PhD Department of Chemistry Università di Torino E-mail: melodj.dosa@unito.it

Results

FT-IR results

- All the samples exhibit a broad band at high wavenumbers (3900-2500 cm⁻¹).
- In the low frequency region, there is the overlapping of the v2 out of plane of interlayer carbonate anions and the vibrational mode of lattice HO-M-OH and M-OH (450-800 cm⁻¹).
- In the intermediate spectral region, there is a band of the bending vibrations of the interlayer water molecules, and the asymmetric v3 stretching mode of the structural interlayer carbonates at around 1400 cm⁻¹.

6th September 2023

Results

Preliminary Electrocatalytic results

Applied potential dependence of Faradaic efficiency (FE) for CO2RR using each cathode with different Zn-Al molar ratios.

Dissolved CO₂RR

 ✓ Factors to limit the CO2 RR reaction Saturation concentration of CO₂ (33 mM) Diffusion rate of CO₂
 Limit of electrolyte because of dissolution of CO₂