

Journal of Asian Ceramic Societies

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/tace20

Electrocatalytic property of Zn-Al layered double hydroxides for CO₂ electrochemical reduction

Noboru Yamaguchi, Ryosuke Nakazato, Keeko Matsumoto, Masako Kakesu, Nataly Carolina Rosero-Navarro, Akira Miura & Kiyoharu Tadanaga

To cite this article: Noboru Yamaguchi, Ryosuke Nakazato, Keeko Matsumoto, Masako Kakesu, Nataly Carolina Rosero-Navarro, Akira Miura & Kiyoharu Tadanaga (2023) Electrocatalytic property of Zn-Al layered double hydroxides for CO₂ electrochemical reduction, Journal of Asian Ceramic Societies, 11:3, 406-411, DOI: <u>10.1080/21870764.2023.2236441</u>

To link to this article: https://doi.org/10.1080/21870764.2023.2236441

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of The Korean Ceramic Society and The Ceramic Society of Japan.

Published online: 18 Jul 2023.

_	
С	
L	4
L	<u> </u>

Submit your article to this journal 🖸

Article views: 1041

View related articles 🖸

View Crossmark data 🗹

RESEARCH ARTICLE

OPEN ACCESS OPEN ACCESS

THE KOREAN CERAMIC SOCIETY

Electrocatalytic property of Zn-Al layered double hydroxides for CO₂ electrochemical reduction

Noboru Yamaguchi^a, Ryosuke Nakazato ^b, Keeko Matsumoto^b, Masako Kakesu^b, Nataly Carolina Rosero-Navarro ^b,^c, Akira Miura ^b and Kiyoharu Tadanaga ^b

THE CERAMIC SOCIETY OF JAPAN

^aGraduate School of Chemical Engineering and Sciences, Hokkaido University, Sapporo, Hokkaido, Japan; ^bFaculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan; ^cInstituto de Cerámica Y Vidrio, CSIC, Madrid, Spain

ABSTRACT

Electrocatalytic CO₂ reduction reaction (CO₂RR) has attracted considerable attention as a technology to recycle carbon dioxide (CO₂) into raw materials for chemicals using renewable energies. In this study, the electrocatalytic CO₂RR activity of Zn-Al layered double hydroxides (LDHs) was studied. Zn-Al LDHs loaded carbon sheets were prepared, and CO₂ RR was performed using CO₂-saturated KHCO₃ electrolyte to confirm the catalytic ability of Zn-Al LDH. Zn-Al LDHs intercalated with CO₃²⁻ anion were synthesized using the mixture of metal nitrates with the different molar ratio of Zn²⁺/Al³⁺ by the co-precipitation process, whose corresponding products were named as Zn₂Al₁ LDH, Zn₃Al₁ LDH, and Zn₄Al₁ LDH, respectively. Except for Zn₂Al₁ LDH, ZnO was observed to exist as an impurity. The synthesized Zn-Al LDHs exhibited the electrocatalytic CO₂RR activity for CO formation. In the case of the Zn₂Al₁ LDH, the current density of 15 mA cm⁻² was obtained with 77% selectivity for CO and 94% selectivity for (CO + H₂) at – 1.4 V vs. RHE. Furthermore, Zn₃Al₁ and Zn₄Al₁ LDHs showed a significant change relating to ZnO impurities in the XRD patterns and SEM images before and after the CO₂RR whereas Zn₂Al₁ LDH did not show it. These results indicate that Zn-Al LDH is promising as a CO₂RR electrocatalyst for CO formation.

1. Introduction

In recent years, carbon dioxide (CO₂) reduction reactions (CO₂RR) have been attracting attention as a technology to achieve carbon neutrality, using surplus electricity generated from renewable energy sources such as solar and wind power [1,2]. Processes of CO₂RR include photochemical, biochemical, and electrochemical reduction [3]. Among these processes, the electrochemical reduction is expected to have higher productivity, higher energy conversion efficiency, and higher sustainability than the other processes because surplus electricity can be used directly as an energy source [4]. Furthermore, the products of CO₂RR include various reduction products such as carbon monoxide (CO), methane (CH₄), methanol (CH₃OH), formic acid (HCOOH), and C₂ products, and selectively obtaining products is also considered an important function. Among these, CO can be used as a raw material for various chemicals: for example, the Fischer-Tropsch method can be used to synthesize liquid hydrocarbon fuels. Equation (1)-(3) shows the reaction of electrochemical reduction of CO₂ to CO under alkaline conditions.

$$\begin{array}{ll} \mbox{Cathode}: \mbox{CO}_2 {+} \mbox{H}_2 \mbox{O} + 2 \mbox{e}^- \rightarrow \mbox{CO} + 2 \mbox{OH}^- \\ \mbox{E}^o {=} -0.11 \mbox{ Vvs.RHE} \end{array} \eqno(1)$$

Anode :
$$2OH^- \rightarrow H_2O + 2e^- + (1/2)O_2$$

 $E^o = +1.23 \text{ Vvs.RHE}$ (2)

Total reaction :
$$CO_2 \rightarrow CO + (1/2)O_2$$
 (3)

As shown in Equation (1), the formation of CO by CO_2 RR on the cathode side involves the formation of hydroxide ions (OH⁻), and its activity tends to increase under alkaline conditions [5]. The CO_2RR electrocatalyst must have high durability against alkaline conditions. Current research on CO-forming CO_2RR has shown that catalysts using precious metals such as silver and gold have high catalytic efficiency [6]. However, precious metals are a limited resource, and there is a need to develop inexpensive electrocatalysts that do not use precious metals.

We focused on layered double hydroxide (LDH) as a material to solve this problem. LDH has the general composition $[M^{2+}_{1-x}M^{3+}_{x}(OH)_2]^{x+}$ $[A^{n-}_{x/n}\cdot yH_2 O]^{x-}$ as shown in Figure 1, which is composed of positively charged metal hydroxide layers containing divalent and trivalent metal ions (M^{2+} and M^{3+})

ARTICLE HISTORY

Received 27 December 2022 Accepted 11 July 2023

KEYWORDS

CO₂ reduction; CO formation; electrocatalyst; layered double hydroxide

CONTACT Nataly Carolina Rosero-Navarro 🖾 rosero@eng.hokudai.ac.jp 🗈 Faculty of Engineering, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8628, Japan; Kiyoharu Tadanaga 🖾 tadanaga@eng.hokudai.ac.jp

^{© 2023} The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of The Korean Ceramic Society and The Ceramic Society of Japan. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

Figure 1. Structure of LDH $([M^{2+}_{1-x}M^{3+}_{x}(OH)_{2}]^{x+} [A^{n-}_{x/n} \cdot yH_{2}O]^{x-})$.

and charge compensating anions (Aⁿ⁻) and water inserted between the layers. The advantages of using LDH as a catalyst include high stability in alkaline solutions [7], high hydroxide ion conductivity [8], various metal compositions [9], and large specific surface area [9]. These properties are also preferable to electrocatalysts for different reactions, and thus, transition metal-containing LDHs have been studied as electrocatalysts for oxygen evolution [7,10,11] and oxygen reduction reactions [7,10,12]. Recently, the application of Cu-Al LDHs as CO₂RR electrocatalysts has been reported, showing that Cu-Al-based LDHs can reduce CO₂ to CO and HCOOH [13]. Moreover, M-AI LDHs (M = Ni, Co) [14] and Zn-M LDHs (M = AI, Ti, Ga) [14,15] have also been reported to exhibit CO₂RR catalytic activity for "photocatalysis", and Zn-Al LDH was found to have the highest CO selectivity (90%) [15].

In this study, the electrocatalytic CO_2RR activity of Zn-Al LDHs was studied. Zn-Al LDHs loaded carbon sheets were prepared, and liquid-phase CO_2RR was performed to confirm the catalytic ability of Zn-Al LDH.

2. Experimental

2.1. Materials

Zinc nitrate hexahydrate $(Zn(NO_3)_2 \cdot 6 H_2O, 99.0\%)$, aluminum nitrate nonahydrate $(Al(NO_3)_3 \cdot 9 H_2O, 98.0\%)$, potassium bicarbonate (KHCO₃, > 99.5%), sodium carbonate (Na₂CO₃, 99.8%), and sodium hydroxide (NaOH, 97.0%) were purchased from FUJIFILM Wako Pure Chemical Co. Ethanol (EtOH, > 99.5%) was purchased from Kanto Chemical Co., Inc. Water was purified by a distilled water production system (SHIMIZU SCIENTIFIC INSTRUMENTS MFG Co., Ltd.). An anion exchange membrane (AHA) was purchased from TAIYO NIPPON SANSO HOKKAIDO Corp. All the other solvents and chemicals in reagent grade were

purchased and were used without further purification.

2.2. Preparation of Zn-Al LDHs

Zn-Al LDH intercalated with CO_3^{2-} (Zn-Al LDH) was prepared using the co-precipitation process [16]. Zn(NO₃)₂·6 H₂O and Al(NO₃)₃·9 H₂O were dissolved in deionized water with the molar ratio of Zn²⁺/Al³⁺ = 2.0, 3.0, 4.0. The mixture was dropped into 0.30 M Na₂CO₃ solution with stirring at 80°C. The pH of the reaction mixture was adjusted to 10 by adding of 2.0 M aqueous NaOH solution with a pH meter (pH700, Eutech Instruments Pte. Ltd.). The obtained solution was aged at room temperature for 24 h. The resulting white precipitate was filtered, washed with distilled water, and dried at 50°C for 24 h.

The products were labeled Zn₂Al₁ LDH, Zn₃Al₁ LDH, and Zn₄Al₁ LDH, corresponding to the starting composition ratio of Zn and Al. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy coupled with energy-dispersive X-ray spectrometry (SEM-EDX), field emission SEM (FE-SEM), and inductively coupled plasma atomic emission spectrometer (ICP-AES). To identify the crystalline phase, XRD patterns (CuKα) were taken using an XRD diffractometer (Mini Flex 600, Rigaku Corp.). The sample morphology and chemical composition were determined by SEM-EDX (TM3030, Hitachi Ltd.; SwiftED3000, Oxford Instruments), FE-SEM (JSM-7001FA, JEOL Ltd.), and ICP-AES (ICPE-9000, Shimadzu Corp.).

2.3. Preparation of the LDH-loaded carbon sheet as a working electrode

The LDH-loaded carbon sheet was prepared by the following procedure. First, 7.5 mg of the Zn-Al LDH, 7.5 mg of the conductive aid (Vulcan XC72, Cabot Corp.), and $6.0 \,\mu$ L of the binder (Teflon solution: 60 mass% ethylenechlorotrifluoroethylene copolymer (ECTFE)) were mixed by grinding, resulting in the film-

like mixture. The obtained mixture was pressed onto a carbon sheet at 3 MPa for 10 s and 5 MPa for 30 s, and the excess area of the mixture was cut. The coating area was 1.0 cm^2 with a 1.0 cm square shape.

2.4. Electrocatalytic CO₂RR experiment

Electrocatalytic CO₂RR was carried out by using a threeelectrode setup composed of a two-chamber cell (H-type cell), as shown in Fig. S1. The cathodic compartment and anodic compartment were separated by a piece of the anion exchange membrane to avoid the unexpected influence of the oxidation reaction taking place on the counter electrode. The LDH-loaded carbon sheet, a platinum wire electrode (CE-100A, EC FRONTIER Co., Ltd.), and Ag/AgCl electrode (3.0 M NaCl, BAS Inc.) were used as working, counter, and reference electrodes, respectively. A CO₂₋saturated 0.10 M aqueous KHCO₃ solutions (pH = 7.0) was used as a catholyte, and a notsaturated one was used as an anolyte. The pH of the electrolyte solution was measured with a pH meter (pH700, Eutech Instruments Pte. Ltd.). The CO₂ gas flowed with 10 mL min⁻¹ flow rate and 0.10 MPa inlet pressure to the cathodic compartment, and the catholyte solution was stirred at 600 rpm with a PTFE stirring bar. Under the above conditions, CO₂ electrolysis for 30 min was performed by applying a voltage with an electrochemical analyzer (Sp-200, Biologic). Gas-phase products were detected by gas chromatography techniques (GC-2014, Shimadzu Corp.; carrier gas: nitrogen, flow rate: 10 ml min⁻¹, pressure: 53.2 kPa, vaporization chamber temperature: 120°C). For the detection of hydrogen (H_2) , Molecular Sieve 5A (GL Sciences Inc.; column temperature: 50°C, injected sample volume: 1 mL) and a thermal conductivity detector (TCD, Shimadzu Corp.; detector temperature: 120°C) were used. For the detection of CO and gaseous hydrocarbons, PoraPak N (GL Sciences Inc.; column temperature: 50°C, injected sample volume: 1 mL) for a flame ionization detector (FID, Shimadzu Corp.; detector temperature: 120°C) was used.

Electrode potentials in the study were converted to the reversible hydrogen electrode (RHE) or the standard hydrogen electrode (SHE) according to the following equations: $E_{\rm RHE} = E_{\rm SHE} + 0.059 \times \rm pH$, $E_{\rm SHE} = E_{\rm Ag/AgCl} + 0.222$. All the potentials and voltages in this work were evaluated without iR calibration. The Faradaic efficiency (*FE*) for CO and H_2 was calculated based on the equation (4) [17].

$$FE = \frac{2VprF}{IRT}$$
(4)

Where V was the volume concentration of CO or H₂ in the produced gas from the reaction cell. *I* (mA) was the average current during the reaction, and *r* was the CO₂ flow rate (m³ s⁻¹) at ambient temperature and pressure. For the other constants in the formula, *p* was 1.013 × 10⁵ Pa, *F* was 96,485 C mol⁻¹, *R* was 8.3145 J mol⁻¹ K⁻¹, and *T* was 298 K.

3. Results and discussion

3.1. Characterization of Zn-Al LDHs

Figures 2 and 3 show the XRD patterns and SEM images of precipitates prepared in this study. As shown in Figure 2, the (003) and (006) plane peaks, characteristic of the layered structure, were observed. In Zn_2AI_1 LDH, all the peaks were assigned to the previously reported XRD pattern of Zn-Al LDH with carbonate (CO₃^{2–}) anions as interlayer anions ((Zn_{0.66} Al_{0.34}(OH)₂)(CO₃)_{0.17}(H₂O)_{0.7}) [16], without other impurity peaks. On the other hand, in Zn₃Al₁ and Zn₄Al₁ LDH,

Figure 2. XRD patterns of Zn_2AI_1 (a), Zn_3AI_1 (b), and Zn_4AI_1 LDHs (c). The data of $(Zn_{0.66}AI_{0.34}(OH)_2)(CO_3)_{0.17}(H_2O)_{0.7}$ and ZnO were referred to [Reference 16 and 18], respectively.

Figure 3. FE-SEM images of Zn₂Al₁ (a), Zn₃Al₁ (b), and Zn₄Al₁ LDHs (c).

the peaks of zinc oxide (ZnO) were observed as impurity peaks [18].

From the FE-SEM images, as shown in Figure 3, plate-like crystals, characteristic of LDH, with a size of 0.1-1 µm were observed in all the systems, but nanometer-order fine particles were also observed in Zn₃ AI_1 and Zn_4AI_1 LDHs, which appeared to be the most abundant in Zn₄Al₁ LDH. These fine particles could be assigned to be ZnO, considering the XRD results. The SEM-EDX mapping showed that Zn²⁺ and Al³⁺ were homogeneously distributed on the particles in the micrometer-order in Zn₂Al₁ and Zn₃Al₁ LDH as shown in Figures S2 (a) and (b). On the other hand, a localized presence of Zn was observed in Zn₄Al₁ LDH as shown in the green circle of Figure S2 (c). This also indicates the presence of ZnO, considering the XRD results. The elemental analysis by ICP-AES showed the chemical composition with Zn^{2+}/Al^{3+} molar ratios of 2.16, 3.11, and 4.17 for Zn₂Al₁, Zn₃Al₁ and Zn₄Al₁ LDH, respectively. These ratios are almost the same as the starting composition ones.

These results are accordance with the previous studies with the urea method [19], as well as coprecipitation method [20,21]. One of them postulated that the crystallization of a hydrotalcite with a Zn^{2+}/Al^{3+} molar ratio of 2:1 occurred more preferentially rather than that of 3:1 [21]. Therefore, in the present study, it was considered that a hydrotalcite with a Zn^{2+}/Al^{3+} molar ratio of 2:1 was a main product even in Zn_3Al_1 and Zn_4Al_1 LDH systems, where excess Zn^{2+} ions were not incorporated into the hydroxide layer and were precipitated as ZnO.

3.2. Electrocatalytic CO₂RR experiment with LDHloaded carbon sheet in 0.1 M aqueous KHCO₃ solution

In the electrocatalytic CO_2RR with Zn-Al LDHs, 0.1 M aqueous KHCO₃ solution was used as a typical electrolyte. The applied potential dependence of current density (*j*) and Faradaic efficiency (*FE*) are shown in Figures 4 and 5, respectively. As shown in Figure 4, the current density increased with more negative

Figure 4. Applied potential dependence of current density (*j*) for electrocatalytic CO_2RR in 0.1 M aqueous KHCO₃ solution using each cathode with Zn_2AI_1 (black), Zn_3AI_1 (red), and Zn_4 AI₁ LDHs (blue).

applied potentials in all the samples, and catalytic currents were observed. The total current densities in all the systems are almost the same at -0.6 to -1.2 V vs. RHE. The additional measurement at -1.4 V vs. RHE was performed only for Zn₂Al₁ LDH, showing the maximum current density of -15.2 mA cm^{-2} at -1.4 V vs RHE. CO was observed as a major product and increased at more negative applied potentials in all the systems. For Zn₂Al₁ LDH, as shown in Figure 5 (a), the FE for CO (FE_{CO}) was 1, 18, 38, 63, and 77% at – 0.6, -0.8, -1.0, -1.2, and -1.4 V vs. RHE, respectively. And then, the hydrogen (H₂) formation was observed as a major side-reaction with the FE of 17-41%, and electron consumption by other reactions gave the FE of 6-41%. CH₄ was detected as a minor product but its FE was less than 0.5% for all the cathodes. In summary, the partial current density for CO formation (j_{CO}) of 11.7 mA cm⁻² was obtained with 77% selectivity for CO and 94% selectivity for $(CO + H_2)$ at -1.4 V vs. RHE for Zn₂Al₁ LDH. The highest FE_{CO} of 77% for Zn₂Al₁ LDH is lower than that of Au nanoparticles (the highest FE_{CO} of 97% [22]) reported so far, but higher than that of Cu-Al LDH (the highest FE_{CO} of 42% [13]) reported

Figure 5. Applied potential dependence of Faradaic efficiency (*FE*) for electrocatalytic CO_2RR in 0.1 M aqueous KHCO₃ solution using each cathode with Zn_2Al_1 (a), Zn_3Al_1 (b) and Zn_4Al_1 LDHs (c). (orange bar: CO, blue bar: H_2).

Figure 6. XRD patterns of Zn₂Al₁, Zn₃Al₁, and Zn₄Al₁ LDHs before and after the electrocatalytic CO₂RR experiment. The attribution of peaks for ZnO and ZnCO₃ was referred to [Reference 18 and 25], respectively.

previously, indicating that Zn₂Al₁ LDH is promising as a non-precious CO₂RR electrocatalyst for CO formation. For Zn_3Al_1 and Zn_4Al_1 LDHs, the FE of each product did not differ significantly to Zn₂Al₁ LDH at all the applied potentials, suggesting that all of them acted as CO₂RR electrocatalysts and ZnO in Zn₃Al₁ and Zn₄Al₁ LDHs did not have a significant contribution to CO formation. Zn is known to be the only earth-abundant monometallic electrocatalyst with high CO selectivity, but bulk Zn catalysts tend to show large overpotentials and slow reaction rates due to small numbers of active sites [23]. Since the monovalent Zn⁺ (3d¹⁰4s¹) site has been found to be an active site in many cases due to its coordinatively unsaturated characteristics [24], the monovalent Zn⁺ site could also act as an active site in the case of Zn-Al LDHs.

Figure 6 shows the XRD patterns of Zn_2AI_1 , Zn_3AI_1 , Zn_4AI_1 LDHs before and after CO_2RR . In all the systems, the Zn-AI LDH peaks were observed even after CO_2RR , where the peak positions did not change. On the other hand, the ZnO peaks disappeared in Zn_3AI_1 and Zn_4AI_1 LDHs, and new peaks corresponding to zinc carbonate (ZnCO₃) [25] appeared in Zn_4AI_1 LDH, while no peaks other than Zn-AI LDH was observed in Zn_2AI_1 LDH after CO_2RR .

Figure S3 shows the SEM images of the carbon sheet loaded with Zn-Al LDHs before and after CO₂ RR. In all the LDHs, significant changes in the size of particles were not observed at the major region. However, only in Zn₄Al₁ LDH, new spherical particles of about 1 μ m were locally observed after CO₂RR as shown in Figure S4(d). These spherical particles were indicated to be ZnCO₃ derived from dissolved ZnO considering the XRD results. This is also supported by the EDX mappings as shown in Figure S4, where the local region occupied by the spherical particles clearly showed more zinc components than the major region. The above XRD and SEM-EDX results suggest that Zn-Al LDH is electrochemically more stable than ZnO under the present experimental conditions.

4. Conclusion

Electrocatalytic activity for CO₂RR of Zn-Al LDH was studied using Zn-Al LDH embedded carbon sheet. Zn-Al LDH exhibited the CO₂RR electrocatalytic activity for CO formation in CO₂RR in an aqueous KHCO₃ solution. With Zn₂Al₁ LDH as an electrocatalyst, the current density of -15.2 mA cm⁻² was obtained with 77% selectivity for CO and 94% selectivity for (CO + H₂) at -1.4 V vs. RHE. Zn₂Al₁ LDH before and after constant potential electrolysis, there is no significant change in structure. These results show that Zn₂Al₁ LDH is promising as a CO₂RR electrocatalyst for CO formation.

Acknowledgments

This research was supported through 4AirCRAFT project under the strategic international cooperation between European Union (Horizon 2020, No.101022633) and Japan Science and Technology Agency (JST) with reference number JPMJSC2102.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The work was supported by the Japan Science and Technology Agency [JPMJSC2102]; European Union's Horizon 2020 research and innovation programme [101022633].

ORCID

Ryosuke Nakazato i http://orcid.org/0009-0008-8544-8053 Nataly Carolina Rosero-Navarro i http://orcid.org/0000-0001-6838-2875

Akira Miura () http://orcid.org/0000-0003-0388-9696 Kiyoharu Tadanaga () http://orcid.org/0000-0002-3319-4353

References

- Tatin A, Bonin J, Robert M. A case for electrofuels. ACS Energy Lett. 2016;1(5):1062–1064. doi: 10.1021/acse nergylett.6b00510
- [2] De LP, Hahn C, Higgins D, et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science. 2019;364(6438): eaav3506. doi: 10.1126/science.aav3506
- [3] Qiao J, Liu Y, Hong F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev. 2014;43(2):631–675. doi: 10.1039/C3CS60323G
- [4] Kamiya K, Fujii K, Sugiyama M, et al. CO₂ electrolysis in integrated artificial photosynthesis systems. Chem Lett. 2021;50(1):166–179. doi: 10.1246/cl.200691
- [5] Luo W, Zhang Q, Zhang J, et al. Electrochemical reconstruction of ZnO for selective reduction of CO2 to CO.
 Appl Catal B Environ. 2020;273(15):119060. Elsevier B.
 V. doi: 10.1016/j.apcatb.2020.119060
- [6] Cheng W-H, Richter MH, Sullivan I, et al. CO₂ reduction to CO with 19% efficiency in a solar-driven gas diffusion electrode flow cell under outdoor solar illumination. ACS Energy Lett American Chem Soc. 2020;5(2):470–476. doi: 10.1021/acsenergylett.9b02576
- [7] Kowsari H, Mehrpooya M, Pourfayaz F. Nitrogen and sulfur doped ZnAl layered double hydroxide/reduced graphene oxide as an efficient nanoelectrocatalyst for oxygen reduction reactions. Int J Hydrogen Energy. 2020;45(51): 27129–27144. Elsevier Ltd.
- [8] Tadanaga K, Furukawa Y, Hayashi A, et al. Direct ethanol fuel cell using hydrotalcite clay as a hydroxide ion conductive electrolyte. Adv Mater. 2010;22 (39):4401–4404. doi: 10.1002/adma.201001766
- [9] Ezeh CI, Tomatis M, Yang X, et al. Ultrasonic and hydrothermal mediated synthesis routes for functionalized Mg-Al LDH: Comparison study on surface morphology, basic site strength, cyclic sorption efficiency and effectiveness. Ultrason Sonochem. 2018;40:341–352. Elsevier B.V. doi: 10.1016/j.ultsonch.2017.07.013
- [10] Lu L, Zheng Y, Yang R, et al. Recent advances of layered double hydroxides-based bifunctional electrocatalysts for ORR and OER. Mater Today Chem. 2021;21:100488. doi:10.1016/j.mtchem.2021.100488. Elsevier Ltd.
- [11] Arishige Y, Kubo D, Tadanaga K, et al. Electrochemical oxygen separation using hydroxide ion conductive layered double hydroxides. Solid State Ion. 2014;262:238–240. Elsevier. doi: 10.1016/j.ssi.2013.09.009
- [12] Iwai Y, Miura A, Rosero-Navarro NC, et al. Composition, valence and oxygen reduction reaction activity of Mn-based layered double hydroxides. J Asian Ceram Soc. 2019;7(2):147–153. doi:10.1080/21870764.2019. 1581321. Taylor and Francis Ltd.
- [13] Iwase K, Hirano T, Honma I. Copper aluminum layered double hydroxides with different compositions and morphologies as electrocatalysts for the carbon dioxide reduction reaction. ChemSuschem. 2022;15(2):

e202102340. doi:10.1002/cssc.202102340. John Wiley and Sons Inc.

- [14] Bai S, Wang Z, Tan L, et al. 600 nm irradiation-induced efficient photocatalytic CO₂ reduction by ultrathin layered double hydroxide nanosheets. Ind Eng Chem Res American Chem Soc. 2020;59(13):5848–5857. doi: 10.1021/acs.iecr.0c00522
- [15] Xiong X, Zhao Y, Shi R, et al. Selective photocatalytic CO₂ reduction over Zn-based layered double hydroxides containing tri or tetravalent metals. Sci Bull. 2020;65(12):987–994. Elsevier B.V. doi: 10.1016/j.scib. 2020.03.032
- [16] Yasaei M, Khakbiz M, Zamanian A, et al. Synthesis and characterization of Zn/Al-LDH@SiO₂ nanohybrid: Intercalation and release behavior of vitamin C. Mater Sci Eng C. 2019;103:109816. doi:10.1016/j. msec.2019.109816. Elsevier Ltd.
- [17] Wu X, Sun JW, Liu PF, et al. Molecularly dispersed cobalt phthalocyanine mediates selective and durable CO₂ reduction in a membrane flow cell. Adv Funct Mater. 2022;32(11):2107301. doi:10.1002/adfm. 202107301.
- [18] Zak AK, Abrishami M, Majid, WHA, et al. Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol-gel combustion method. Ceram. Int. 2011;37 (1):393–398. doi: 10.1016/j.ceramint.2010.08.017
- [19] Liu Z, Ma R, Ebina Y, et al. General synthesis and delamination of highly crystalline transition-metalbearing layered double hydroxides. Langmuir. 2007;23(2):861–867. doi: 10.1021/la062345m
- [20] Xu Z, Shi J, Haroone MS, et al. Zinc-aluminum oxide solid solution nanosheets obtained by pyrolysis of layered double hydroxide as the photoanodes for dye-sensitized solar cells. J Colloid Interface Sci. 2018;515:240–247. Elsevier Inc. doi: 10.1016/j.jcis. 2018.01.037
- [21] Kloprogge JT, Hickey L, Frost RL. The effects of synthesis pH and hydrothermal treatment on the formation of zinc aluminum hydrotalcites. J Solid State Chem. 2004;177(11):4047–4057. doi: 10.1016/j.jssc.2004.07.010
- [22] Zhu W, Michalsky R, Metin Ö, et al. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO₂ to CO. J Am Chem Soc. 2013;135 (45):16833–16836. doi: 10.1021/ja409445p
- [23] Hori Y, Wakebe H, Tsukamoto T, et al. Electrocatalytic process of CO selectivity in electrochemical reduction of CO₂ at metal electrodes in aqueous media. Electrochim Acta. 1994;39(11–12):1833–1839. doi: 10. 1016/0013-4686(94)85172-7
- [24] Chen G, Zhao Y, Shang L, et al. Recent advances in the synthesis, characterization and application of Zn + containing heterogeneous catalysts. Adv Sci. 2016;3 (7):1500424. doi: 10.1002/advs.201500424
- [25] Liang W, Bai J, Li Z, et al. Crystal growth, structure and thermal properties of anhydrous zinc carbonate (ZnCO₃). J Alloys Compd. 2022;898:162916. Elsevier. doi: 10.1016/j.jallcom.2021.162916